Skip to main content
Log in

Global Dynamics Analysis of Non-Local Delayed Reaction-Diffusion Avian Influenza Model with Vaccination and Multiple Transmission Routes in the Spatial Heterogeneous Environment

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In order to reveal the transmission dynamics of Avian influenza and explore effective control measures, we develop a non-local delayed reaction-diffusion model of Avian influenza with vaccination and multiple transmission routes in the heterogeneous spatial environment, taking into account the incubation period of Avian influenza in humans and poultry. Firstly, the well-posedness of model is obtained which includes the existence, uniform boundedness and the existence of global attractor. Further, the basic reproduction number \({\mathcal {R}}_0 \) of this model is calculated by the definition of the spectral radius of the next generation operator, and its variational form is also derived. Further, the global dynamics of the model is established based on the biological significance of \({\mathcal {R}}_0 \). To be more precise, if \({\mathcal {R}}_0<1\), the disease-free steady state is globally asymptotically stable (i.e., the disease is extinct), while if \({\mathcal {R}}_0>1\), the disease is uniformly persistent and model admits at least one endemic steady state. In addition, by constructing suitable Lyapunov functionals, we achieve the global asymptotic stability of the disease-free and endemic steady states of this model in spatially homogeneous. Finally, some numerical simulations illustrate the main theoretical results, and discuss the sensitivity of \({\mathcal {R}}_0 \) on the model parameters and the influences of non-local delayed and diffusion rates on the transmission of Avian influenza. The theoretical results and numerical simulations show that prolonging the incubation period, controlling the movement of infected poultry, and regular disinfecting the environment are all effective ways to prevent Avian influenza outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. https://www.chp.gov.hk/files/pdf/2022 avian influenza report vol18 wk46 chi.pdf

  2. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207, 1–25 (2007)

    Article  MathSciNet  Google Scholar 

  3. Agusto, F., Gumel, A.: Theoretical assessment of avian influenza vaccine. Discret. Cont. Dyn. B 13, 1–25 (2010)

    MathSciNet  Google Scholar 

  4. Feukouo Fossi, A., Lubuma, J., Tadmon, C., Tsanou, B.: Mathematical modeling and nonstandard finite difference scheme analysis for the environmental and spillover transmissions of Avian Influenza A model. Dyn. Syst. 36, 212–255 (2021)

    Article  MathSciNet  Google Scholar 

  5. Iwami, S., Takeuchi, Y., Korobeinikov, A., Liu, X.: Prevention of avian influenza epidemic: what policy should we choose? J. Theor. Biol. 252, 732–741 (2008)

    Article  MathSciNet  Google Scholar 

  6. Iwami, S., Takeuchi, Y., Liu, X., Nakaoka, S.: A geographical spread of vaccine-resistance in avian influenza epidemics. J. Theor. Biol. 259, 219–228 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Wen, Y.: Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region. J. Theor. Biol. 367, 180–188 (2015)

    Article  MathSciNet  Google Scholar 

  8. Liu, Z., Fang, C.: A modeling study of human infections with avian influenza A H7N9 virus in mainland China. Int. J. Infect. Dis. 41, 73–78 (2015)

    Article  Google Scholar 

  9. Guo, S., Wang, J., Ghost, M., Li, X.: Analysis of avian influenza A (H7N9) model based on the low pathogenicity in poultry. J. Biol. Syst. 25, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  10. Yu, X., Ma, Y.: An avian influenza model with nonlinear incidence and recovery rates in deterministic and stochastic environments. Nonlinear Dyn. 108, 4611–4628 (2022)

    Article  Google Scholar 

  11. Geng, J., Wang, Y., Liu, Y., Yang, L., Yan, J.: Analysis of an avian influenza model with Allee effect and stochasticity. Int. J. Biomath. 16, 2250111 (2023)

    Article  MathSciNet  Google Scholar 

  12. Ali, A., Khan, S., Ali, I., Khan, F.: On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method. Math. Method Appl. Sci. 45, 8230–8246 (2022)

    Article  MathSciNet  Google Scholar 

  13. Dwivedi, A., Keval, R., Khajanchi, S.: Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Phys. Scripta 97, 085214 (2022)

    Article  Google Scholar 

  14. Silver, S., van den Driessche, P., Khajanchi, S.: A dynamic multistate and control model of the COVID-19 pandemic. J. Public Health-UK, 1-14 (2023)

  15. Kumar, R., Kumar, T., Khajanchi, S.: Modeling the influence of vaccination coverage on the dynamics of COVID-19 pandemic with the effect of environmental contamination. Math. Method Appl. Sci. 46, 12425–12453 (2023)

    Article  MathSciNet  Google Scholar 

  16. Khajanchi, S., Das, D., Kar, T.: Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Phys. A Stat. Mech. Appl. 497, 52–71 (2018)

    Article  MathSciNet  Google Scholar 

  17. Das, D., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math. Comput. 366, 124732 (2020)

    MathSciNet  Google Scholar 

  18. Das, D., Khajanchi, S., Kar, T.: Transmission dynamics of tuberculosis with multiple re-infections. Chaos Soliton Fractals 130, 109450 (2020)

    Article  MathSciNet  Google Scholar 

  19. Khajanchi, S., Bera, S., Roy, T.: Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes. Math. Comput. Simulat. 180, 354–378 (2021)

    Article  MathSciNet  Google Scholar 

  20. Bera, S., Khajanchi, S., Roy, T.: Stability analysis of fuzzy HTLV-I infection model: a dynamic approach. J. Appl. Math. Comput. 69, 171–199 (2023)

    Article  MathSciNet  Google Scholar 

  21. Liu, S., Ruan, S., Zhang, X.: On avian influenza epidemic models with time delay. Theory Biosci. 134, 75–82 (2015)

    Article  Google Scholar 

  22. Kang, T., Zhang, Q., Rong, L.: A delayed avian influenza model with avian slaughter: stability analysis and optimal control. Phys. A Stat. Mech. Appl. 529, 121544 (2019)

    Article  MathSciNet  Google Scholar 

  23. Ding, C., Liu, W., Sun, Y., Zhu, Y.: A delayed Schistosomiasis transmission model and its dynamics. Chaos Soliton Fractals 118, 18–34 (2019)

    Article  MathSciNet  Google Scholar 

  24. Song, P., Xiao, Y.: Analysis of an epidemic system with two response delays in media impact function. Bull. Math. Biol. 81, 1–31 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, N., Qi, L., Bessane, M., Hao, M.: Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection. J. Differ. Equ. 369, 1–40 (2023)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Z., Kundu, S., Tripathi, J., Bugalia, S.: Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays. Chaos Soliton Fractals 131, 109483 (2020)

    Article  MathSciNet  Google Scholar 

  27. Zheng, T., Nie, L., Teng, Z., Luo, Y.: Competitive exclusion in a multi-strain malaria transmission model with incubation period. Chaos Soliton Fractals 131, 109545 (2020)

    Article  MathSciNet  Google Scholar 

  28. Zhang, T., Li, Z., Ma, L., Song, X.: Threshold dynamics in a clonorchiasis model with time delays. Appl. Math. Model. 102, 351–370 (2022)

    Article  MathSciNet  Google Scholar 

  29. Wang, N., Qi, L., Bessane, M., Hao, M.: Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection. J. Differ. Equ. 369, 1–40 (2023)

    Article  MathSciNet  Google Scholar 

  30. Bera, S., Khajanchi, S., Roy, T.: Dynamics of an HTLV-I infection model with delayed CTLs immune response. Appl. Math. Comput. 430, 127206 (2022)

    MathSciNet  Google Scholar 

  31. Allen, L., Bolker, B., Lou, Y., Nevai, A.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discret. Cont. Dyn. A 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  32. Cai, Y., Wang, K., Wang, W.: Global transmission dynamics of a Zika virus model. Appl. Math. Lett. 92, 190–195 (2019)

    Article  MathSciNet  Google Scholar 

  33. Cui, R., Lam, K., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Cui, R.: Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates. Adv. Nonlinear Anal. 10, 922–951 (2021)

    Article  MathSciNet  Google Scholar 

  35. Zhang, C., Gao, J., Sun, H., Wang, J.: Dynamics of a reaction-diffusion SVIR model in a spatial heterogeneous environment. Phys. A Stat. Mech. Appl. 533, 1220490 (2019)

    Article  MathSciNet  Google Scholar 

  36. Luo, Y., Tang, S., Teng, Z., Zhang, L.: Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence. Nonlinear Anal. Real World Appl. 50, 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  37. Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024 (2018)

    Article  MathSciNet  Google Scholar 

  38. Xu, Z., Xu, Y., Huang, Y.: Stability and traveling waves of a vaccination model with nonlinear incidence. Comput. Math. Appl. 75, 561–581 (2018)

    Article  MathSciNet  Google Scholar 

  39. Yang, Y., Zhang, S.: Dynamics of a diffusive vaccination model with nonlinear incidence. Comput. Math. Appl. 75, 4355–4360 (2018)

    Article  MathSciNet  Google Scholar 

  40. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. J. Differ. Equ. 247, 1096–1119 (2009)

    Article  MathSciNet  Google Scholar 

  41. Yang, Y., Zou, L., Zhou, J., Hsu, C.: Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate. Nonlinear Anal. Real World Appl. 53, 103065 (2020)

    Article  MathSciNet  Google Scholar 

  42. Zheng, T., Nie, L., Zhu, H., Luo, Y., Teng, Z.: Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza. Nonlinear Anal. Real World Appl. 67, 103567 (2022)

    Article  MathSciNet  Google Scholar 

  43. Wang, W., Zhao, X.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  Google Scholar 

  44. Xu, Z., Zhao, Y.: A diffusive dengue disease model with nonlocal delayed transmission. Appl. Math. Comput. 270, 808–829 (2015)

    MathSciNet  Google Scholar 

  45. Ruan, S.: Spatial-temporal dynamics in nonlocal epidemiological models. In: Mathematics for Life Science and Medicine. Springer, Berlin, 97-122 (2007)

  46. Qu, H., Jiang, T., Wang, J., Zhao, J.: Dynamical analysis of a diffusive malaria model with fixed latent period in the human and vector populations. Int. J. Biomath. 16, 2250069 (2023)

    Article  MathSciNet  Google Scholar 

  47. Lin, H., Wang, F.: On a reaction-diffusion system modeling the dengue transmission with nonlocal infections and crowding effects. Appl. Math. Comput. 248, 184–194 (2014)

    MathSciNet  Google Scholar 

  48. Wu, P., Zhao, H.: Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity. J. Franklin Inst. I(358), 5552–5587 (2021)

    Article  MathSciNet  Google Scholar 

  49. Sun, G., Zhang, H., Chang, L., Jin, Z., Wang, H., Ruan, S.: On the dynamics of a diffusive foot-and-mouth disease model with nonlocal infections. SIAM J. Appl. Math. 82, 1587–1610 (2022)

    Article  MathSciNet  Google Scholar 

  50. Shu, H., Ma, Z., Wang, H.: Diffusive host-pathogen model revisited: Nonlocal infections, incubation period and spatial heterogeneity. J. Math. Anal. Appl. 516, 126477 (2022)

    Article  MathSciNet  Google Scholar 

  51. Li, F., Zhao, X.: Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. J. Differ. Equ. 272, 127–163 (2021)

    Article  MathSciNet  Google Scholar 

  52. Zhang, L., Wang, S.: A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal. Real World Appl. 51, 102988 (2020)

    Article  MathSciNet  Google Scholar 

  53. Luo, Y., Teng, Z., Zhao, X.: Transmission dynamics of a general temporal-spatial vector-host epidemic model with an application to the dengue fever in Guangdong, China. Discret. Cont. Dyn. B 28, 134–169 (2023)

    Article  MathSciNet  Google Scholar 

  54. Metz, J., Diekmann, O.: The dynamics of physiologically structured populations. Springer, New York (1986)

    Book  Google Scholar 

  55. Guo, Z., Wang, F., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math. Biol. 65, 1387–1410 (2012)

    Article  MathSciNet  Google Scholar 

  56. Smith, H.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence (1995)

    Google Scholar 

  57. Martin, R., Smith, H.: Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  Google Scholar 

  58. Wu, J.: Theory and applications of partial functional differential equations. Springer, New York (1996)

    Book  Google Scholar 

  59. Hale, J.: Asymptotic behavior of dissipative systems. American Mathematical Society, Providence (1988)

    Google Scholar 

  60. Gourley, S., Kuang, Y.: A delay reaction-diffusion model of the spread of bacterio-phage infection. SIAM J. Appl. Math. 65, 550–566 (2004)

    Article  MathSciNet  Google Scholar 

  61. Wang, W., Zhao, X.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  Google Scholar 

  62. Thieme, H.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  Google Scholar 

  63. Thieme, H., Zhao, X.: A non-local delayed and diffusive predator-prey model. Nonlinear Anal. Real World Appl. 2, 145–160 (2001)

    Article  MathSciNet  Google Scholar 

  64. Wang, J., Wang, J.: Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J. Dyn. Differ. Equ. 33, 549–575 (2021)

    Article  MathSciNet  Google Scholar 

  65. Protter, M., Weinberger, H.: Maximum principles in differential equations. Springer, New York (1984)

    Book  Google Scholar 

  66. Thieme, H.: Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  Google Scholar 

  67. Smith, H., Zhao, X.: Robust persistence for semidynamical systems. Nonlinear Anal. Theory Methods Appl. 47, 6169–6179 (2001)

    Article  MathSciNet  Google Scholar 

  68. Magal, P., Zhao, X.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  69. It\(\acute{o}\), S.: Diffusion equations, translations of mathematical monographs. American Mathematical Society, Providence (1992)

  70. Wang, W., Zhao, X.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editors for their valuable suggestions for the improvement of the paper.

Funding

This research is partially supported by the Tianshan Talent Training Program (Grant No. 2022TSYCCX0015), the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2021D01E12), the National Natural Science Foundation of China (Grant No. 12361103).

Author information

Authors and Affiliations

Authors

Contributions

J.Li and L.Nie wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Linfei Nie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Nie, L. Global Dynamics Analysis of Non-Local Delayed Reaction-Diffusion Avian Influenza Model with Vaccination and Multiple Transmission Routes in the Spatial Heterogeneous Environment. Qual. Theory Dyn. Syst. 23, 198 (2024). https://doi.org/10.1007/s12346-024-01057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01057-1

Keywords

Navigation