Skip to main content
Log in

Qualitative Structures Near a Degenerate Fixed Point of a Discrete Ratio-Dependent Predator–Prey System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates the qualitative structures of a discrete ratio-dependent predator–prey model near a degenerate fixed point whose eigenvalues are \(\pm 1\). By the normal form theory, Picard iteration and Takens’s theorem, this model is transformed into an ordinary differential system. Then the qualitative structures of this differential system near the highly degenerate equilibrium are analyzed with the blowing-up method, which yields the ones of the discrete model near the fixed point by the conjugacy between the discrete model and the time-one mapping of the vector field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availibility Statement

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Álvarez, M.J., Ferragut, A., Jarque, X.: A survey on the blow up technique. Int. J. Bifur. Chaos Appl. Sci. Eng. 21, 3103–3118 (2011)

  2. Aulisa, E., Jang, S.R.J.: Continuous-time predator-prey systems with Allee effects in the prey. Math. Comput. Simul. 105, 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  3. Baigent, S., Hou, Z., Elaydi, S., Balreira, E.C., Luís, R.: A global picture for the planar Ricker map: convergence to fixed points and identification of the stable/unstable manifolds. J. Differ. Equ. Appl. 29, 575–591 (2023)

    Article  MathSciNet  Google Scholar 

  4. Balreira, C.E., Elaydi, S., Luís, R.: Local stability implies global stability for the planar Ricker competition model. Discrete Contin. Dyn. Syst. Ser. B 19, 323–351 (2014)

    MathSciNet  Google Scholar 

  5. Chakraborty, P., Sarkar, S., Ghosh, U.: Stability and bifurcation analysis of a discrete prey-predator model with sigmoid functional response and Allee effect. Rend. Circ. Mat. Palermo 2(70), 253–273 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q.L., Teng, Z.D.: Codimension-two bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response. J. Differ. Equ. Appl. 23, 2093–2115 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q.L., Teng, Z.D., Wang, F.: Fold-flip and strong resonance bifurcations of a discrete-time mosquito model. Chaos, Solitons Fractals 144, 110704 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cheng, L.F., Cao, H.J.: Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect. Commun. Nonlinear Sci. Numer. Simul. 38, 288–302 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Q., Zhang, Y.L., Deng, S.F.: Qualitative analysis of a degenerate fixed point of a discrete predator-prey model with cooperative hunting. Math. Methods Appl. Sci. 44, 11059–11075 (2021)

    Article  MathSciNet  Google Scholar 

  10. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, New York (1994)

    Book  Google Scholar 

  11. Din, Q.: Dynamics and chaos control for a novel model incorporating plant quality index and larch budmoth interaction. Chaos, Solitons & Fractals 153, 111595 (2021)

    Article  MathSciNet  Google Scholar 

  12. Din, Q.: Complex dynamical behavior and control of a discrete ecological model. J. Vib. Control 29, 5270–5288 (2023)

    Article  MathSciNet  Google Scholar 

  13. Din, Q., Khan, M.I.: A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control. Qual. Theory Dyn. Syst. 20, 1–35 (2021)

    Article  MathSciNet  Google Scholar 

  14. Din, Q., Zulfiqar, M.A.: Qualitative behavior of a discrete predator-prey system under fear effects. Ze. Naturforsch. A 77, 1023–1043 (2022)

    Article  Google Scholar 

  15. Dumortier, F., Rodrigues, P.R., Roussarie, R.: Germs of Diffeomorphisms in the Plane. Springer, New York (1981)

    Book  Google Scholar 

  16. Fei, L.Z., Chen, X.W., Han, B.S.: Bifurcation analysis and hybrid control of a discrete-time predator-prey model. J. Differ. Equ. Appl. 27, 102–117 (2021)

    Article  MathSciNet  Google Scholar 

  17. Ishaque, W., Din, Q., Khan, K.A., Mabela, R.M.: Dynamics of predator-prey model based on fear effect with bifurcation analysis and chaos control. Qual. Theory Dyn. Syst. 23, 26 (2024)

    Article  MathSciNet  Google Scholar 

  18. Kulakov, M., Neverova, G., Frisman, E.: The Ricker competition model of two species: Dynamic modes and phase multistability. Mathematics 10, 1076 (2022)

    Article  Google Scholar 

  19. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Book  Google Scholar 

  20. Kuznetsov, Y.A., Meijer, H.G., van Veen, L.: The fold-flip bifurcation. Int. J. Bifur. Chaos Appl. Sci. Eng. 14, 2253–2282 (2004)

  21. Lei, C., Han, X.L., Wang, W.M.: Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor. Math. Biosci. Eng. 19, 6659–6679 (2022)

    Article  MathSciNet  Google Scholar 

  22. Levi, M., Zhou, J.: Arnold tongues in area-preserving maps. Arch. Ration. Mech. Anal. 247, 32 (2023)

    Article  MathSciNet  Google Scholar 

  23. Li, X.Y., Liu, Y.Q.: Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system. Qual. Theory Dyn. Syst. 21, 122 (2022)

    Article  MathSciNet  Google Scholar 

  24. Liu, P., Elaydi, S.N.: Discrete competitive and cooperative models of Lotka-Volterra type. J. Comput. Anal. Appl. 3, 53–73 (2001)

    MathSciNet  Google Scholar 

  25. Luís, R., Elaydi, S., Oliveira, H.: Stability of a Ricker-type competition model and the competitive exclusion principle. J. Biol. Dyn. 5, 636–660 (2011)

    Article  MathSciNet  Google Scholar 

  26. May, R.M.: Biological populations with non-overlapping generations: Stable points, stable cycles, and chaos. Science 186, 645–647 (1974)

    Article  Google Scholar 

  27. Naik, P.A., Eskandari, Z., Avazzadeh, Z., Zu, J.: Multiple bifurcations of a discrete-time prey-predator model with mixed functional response. Int. J. Bifur. Chaos Appl. Sci. Eng. 32, 2250050 (2022)

  28. Revel, G., Alonso, D.M., Moiola, J.L.: A gallery of oscillations in a resonant electric circuit: Hopf-Hopf and fold-flip interactions. Int. J. Bifur. Chaos Appl. Sci. Eng. 02, 481-494 (2008)

  29. Ryals, B.: Dynamics of the degenerate 2D Ricker equation. Math. Methods Appl. Sci. 42, 553–566 (2019)

    Article  MathSciNet  Google Scholar 

  30. Ryals, B., Sacker, R.J.: Global stability in the 2D Ricker equation. J. Differ. Equ. Appl. 11, 1068–1081 (2015)

    Article  MathSciNet  Google Scholar 

  31. Ryals, B., Sacker, R.J.: Global stability in the 2D Ricker equation revisited. Discrete Contin. Dyn. Syst. Ser. B 22, 585–604 (2017)

    MathSciNet  Google Scholar 

  32. Salman, S.M., Yousef, A.M., Elsadany, A.A.: Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response. Chaos, Solitons Fractals 93, 20–31 (2016)

    Article  MathSciNet  Google Scholar 

  33. Smith, H.L.: Planar competitive and cooperative difference equations. J. Differ. Equ. Appl. 3, 335–357 (1998)

    Article  MathSciNet  Google Scholar 

  34. Shu, Q., Xie, J.L.: Stability and bifurcation analysis of discrete predator-prey model with nonlinear prey harvesting and prey refuge. Math. Methods Appl. Sci. 45, 3589–3604 (2022)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Y.L., Cheng, Q., Deng, S.F.: Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete Contin. Dyn. Syst. Ser. S 16, 773–786 (2023)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equations. American Mathematica Society, Providence (1992)

    Google Scholar 

  37. Zhang, X., Zhang, Q.L., Sreeram, V.: Bifurcation analysis and control of a discrete harvested prey-predator system with Beddington-DeAngelis functional response. J. Franklin Inst. 347, 1076–1096 (2010)

    Article  MathSciNet  Google Scholar 

  38. Zhang, J., Zhong, J.Y.: Qualitative structures of a degenerate fixed point of a Ricker competition model. J. Differ. Equ. Appl. 25, 430–454 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhong, J.Y., Deng, S.F.: Two codimension-two bifurcations of a second-order difference equation from macroeconomics. Discrete Contin. Dyn. Syst. Ser. B 23, 1581–1600 (2018)

    MathSciNet  Google Scholar 

  40. Zhong, J.Y., Zhang, J.: The stability of a degenerate fixed point for Guzowska-Luís-Elaydi model. J. Differ. Equ. Appl. 24, 409–424 (2018)

    Article  Google Scholar 

  41. Zhuo, X.L., Zhang, F.X.: Stability for a new discrete ratio-dependent predator-prey system. Qual. Theory Dyn. Syst. 17, 189–202 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions. This research is supported by the National Natural Science Foundation of China (12171171), the Natural Science Foundation of Fujian Province of China (2022J01303 and 2023J01121) and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Contributions

S.D. proposed the idea of this paper and performed all the steps of the proofs. J. Y. wrote the whole paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shengfu Deng.

Ethics declarations

Conflict of interest

This work does not have any Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Deng, S. Qualitative Structures Near a Degenerate Fixed Point of a Discrete Ratio-Dependent Predator–Prey System. Qual. Theory Dyn. Syst. 23, 191 (2024). https://doi.org/10.1007/s12346-024-01052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01052-6

Keywords

Navigation