Skip to main content
Log in

On the Number of Positive Solutions for a Higher Order Elliptic System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Some new criteria on existence of positive solution for a higher order elliptic problem with an eigenvalue parameter are established under some sublinear conditions, which involve the principle eigenvalues of the corresponding linear problems. New results on nonexistence and multiplicity of positive solutions are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal. 11, 346–384 (1972)

    MathSciNet  Google Scholar 

  2. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    MathSciNet  Google Scholar 

  3. Berchio, E., Farina, A., Ferrero, A., Gazzola, F.: Existence and stability of entire solutions to a semilinear fourth order elliptic problem. J. Differ. Equ. 252, 2596–2612 (2012)

    MathSciNet  Google Scholar 

  4. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    MathSciNet  Google Scholar 

  5. Cac, N.P., Fink, A.M., Gatica, J.A.: Nonnegative solutions of quasilinear elliptic boundary value problems with nonnegative coefficients. J. Math. Anal. Appl. 206, 1–9 (1997)

    MathSciNet  Google Scholar 

  6. Cassani, D., Schiera, D.: Uniqueness results for higher order Lane-Emden systems. Nonlinear Anal. 198, 111871 (2020)

    MathSciNet  Google Scholar 

  7. Chang, K., Li, S., Liu, J.: Remarks on multiple solutions for asymptotically linear elliptic boundary value problems. Topol. Methods Nonlinear Anal. 3, 179–187 (1994)

    MathSciNet  Google Scholar 

  8. Chang, S.-Y.A., Chen, W.: A note on a class of higher order conformally covariant equations. Discrete Contin. Dyn. Syst. 7, 275–281 (2001)

    MathSciNet  Google Scholar 

  9. Chen, Y., McKenna, P.J.: Traveling waves in a nonlinear suspension beam: theoretical results and numerical observations. J. Differ. Equ. 136, 325–355 (1997)

    Google Scholar 

  10. Dai, W., Qin, G., Zhang, Y.: Liouville type theorem for higher order Hénon equations on a half space. Nonlinear Anal. 183, 284–302 (2019)

    MathSciNet  Google Scholar 

  11. Dalmass, R.: Uniqueness theorems for some fourth order elliptic equations. Proc. Am. Math. Soc. 123, 1177–1183 (1995)

    MathSciNet  Google Scholar 

  12. Dalmasso, R.: Existence and uniqueness results for polyharmonic equations. Nonlinear Anal. 36, 131–137 (1999)

    MathSciNet  Google Scholar 

  13. Davila, J., Dupaigne, L., Wang, K., Wei, J.: A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)

    MathSciNet  Google Scholar 

  14. Díaz, J.I., Lazzo, M., Schmidt, P.G.: Asymptotic behavior of large radial solutions of a polyharmonic equation with superlinear growth. J. Differ. Equ. 257, 4249–4276 (2014)

    MathSciNet  Google Scholar 

  15. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Google Scholar 

  16. de Figueiredo, D.G., Lions, P.L., Nussbaum, R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61, 41–63 (1982)

    MathSciNet  Google Scholar 

  17. Feng, M.: Positive solutions for biharmonic equations: existence, uniqueness and multiplicity. Mediterr. J. Math. 20, 309 (2023)

    MathSciNet  Google Scholar 

  18. Feng, M., Zhang, X.: Nontrivial solutions for the polyharmonic problem: existence, multiplicity and uniqueness. Front. Math. 18, 307–340 (2023)

    MathSciNet  Google Scholar 

  19. Ferrara, M., Khademloo, S., Heidarkhani, S.: Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems. Appl. Math. Comput. 234, 316–325 (2014)

    MathSciNet  Google Scholar 

  20. Ferrero, A., Warnault, G.: On solutions of second and fourth order elliptic equations with power-type nonlinearities. Nonlinear Anal. 70, 2889–2902 (2009)

    MathSciNet  Google Scholar 

  21. Guo, Z.: Further study of entire radial solutions of a biharmonic equation with exponential nonlinearity. Ann. Mat. Pura Appl. 193, 187–201 (2014)

    MathSciNet  Google Scholar 

  22. Guo, Z., Guan, X., Zhao, Y.: Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete Contin. Dyn. Syst. 39, 2613–2636 (2019)

    MathSciNet  Google Scholar 

  23. Guo, Y., Peng, S.: Liouville-type theorems for higher-order Lane-Emden system in exterior domains. Commun. Contemp. Math. 25, 2250006 (2023)

    MathSciNet  Google Scholar 

  24. Graef, J.R., Heidarkhani, S., Kong, L.: Multiple solutions for a class of \((p_1,\dots , p_n)\)-biharmonic systems. Commun. Pure Appl. Anal. 12, 1393–1406 (2013)

    MathSciNet  Google Scholar 

  25. Gupta, C.P.: Existence and uniqueness theorem for the bending of an elastic beam equation. Appl. Anal. 26, 289–304 (1988)

    MathSciNet  Google Scholar 

  26. Heidarkhani, S.: Existence of non-trivial solutions for systems of fourth order partial differential equations. Math. Slovaca 64, 1249–1266 (2014)

    MathSciNet  Google Scholar 

  27. Heidarkhani, S., Tian, Y., Tang, C.-L.: Existence of three solutions for a class of \((p_1,\dots, p_n)\)-biharmonic systems with Navier boundary conditions. Ann. Pol. Math. 104, 261–277 (2012)

    Google Scholar 

  28. Heidarkhani, S., Moradi, S.: Existence results for a \(2n\)th-order differential equation with Sturm-Liouville operator. Numer. Funct. Anal. Opt. 42, 1239–1262 (2021)

    Google Scholar 

  29. Kiper, H.J.: On positive solutions of nonlinear elliptic eigenvalue problems. Rend. Circ. Mat. Palermo Serie II, Tomo XX, pp. 113–138 (1971)

  30. Kormdn, P.: Solution curves for semilinear equations on a ball. Proc. Am. Math. Soc. 125, 1997–2005 (1997)

    MathSciNet  Google Scholar 

  31. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff, Groningen (1964)

    Google Scholar 

  32. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Transl. Ser. I(10), 199–325 (1962)

    Google Scholar 

  33. Kwong, M.K., Li, Y.: Uniqueness of radial solutions of semilinear elliptic equations. Trans. Am. Math. Soc. 333, 339–363 (1992)

    MathSciNet  Google Scholar 

  34. Li, F., Rong, T., Liang, Z.: Multiple positive solutions for a class of \((2, p)\)-Laplacian equation. J. Math. Phys. 59, 121506 (2018)

    MathSciNet  Google Scholar 

  35. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    MathSciNet  Google Scholar 

  36. Liu, Y., Wang, Z.: Biharmonic equation with asymptotically linear nonlinearities. Acta Math. Sci. 27B, 549–560 (2007)

    MathSciNet  Google Scholar 

  37. Liu, Z.: Positive solutions of superlinear elliptic equations. J. Funct. Anal. 167, 370–398 (1999)

    MathSciNet  Google Scholar 

  38. Mancini, G., Romani, G.: Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular weights. Nonlinear Anal. 192, 111717 (2020)

    MathSciNet  Google Scholar 

  39. Mareno, A.: Maximum principles and bounds for a class of fourth order nonlinear elliptic equations. J. Math. Anal. Appl. 377, 495–500 (2011)

    MathSciNet  Google Scholar 

  40. Nazarov, S.A., Sweers, G.: A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Differ. Equ. 233, 151–180 (2007)

    MathSciNet  Google Scholar 

  41. Peletier, L.A., Serrin, J.: Uniqueness of nonnegative solutions of semilinear equations in \({\mathbb{R} }^n\). J. Differ. Equ. 61, 380–397 (1986)

    Google Scholar 

  42. Schechter, M., Zou, W.: Superlinear problems. Pacific J. Math. 214, 145–160 (2004)

    MathSciNet  Google Scholar 

  43. Schiera, D.: Existence of solutions to higher order Lane-Emden type systems. Nonlinear Anal. 168, 130–153 (2018)

    MathSciNet  Google Scholar 

  44. Silva, E.D., Cavalcante, T.R.: Fourth-order elliptic problems involving concave-superlinear nonlinearities. Topol. Methods Nonlinear Anal. 59, 581–600 (2022)

    MathSciNet  Google Scholar 

  45. Sirakov, B.: Existence results and a priori bounds for higher order elliptic equations and systems. J. Math. Pures Appl. 89, 114–133 (2008)

    MathSciNet  Google Scholar 

  46. Smoller, J.A., Wasserman, A.G.: Existence, uniqueness, and nondegeneracy of positive solution of semilinear elliptic equations. Commun. Math. Phys. 95, 129–159 (1984)

    MathSciNet  Google Scholar 

  47. Villaggio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  48. Wang, X., Zhang, J.: Existence and regularity of positive solutions of a degenerate fourth order elliptic problem. Topol. Methods Nonlinear Anal. 59, 737–756 (2022)

    MathSciNet  Google Scholar 

  49. Zhang, J., Li, S.: Multiple nontrivial solutions for some fourth-order semilinear elliptic problems. Nonlinear Anal. 60, 221–230 (2005)

    MathSciNet  Google Scholar 

  50. Zhang, X., Wu, Y., Cui, Y.: Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator. Appl. Math. Lett. 82, 85–91 (2018)

    MathSciNet  Google Scholar 

  51. Zhang, X., Liu, L., Wu, Y., Cui, Y.: The existence and nonexistence of entire large solutions for a quasilinear Schrodinger elliptic system by dual approach. J. Math. Anal. Appl. 464, 1089–1106 (2018)

    MathSciNet  Google Scholar 

  52. Zhang, X., Jiang, J., Wu, Y., Cui, Y.: The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach. Appl. Math. Lett. 100, 106018 (2020)

    MathSciNet  Google Scholar 

  53. Zhou, H.: Positive for a semilinear elliptic equations which is almost linear at infinity. Z. Angew. Math. Phys. 49, 896–906 (1998)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is sponsored by National Natural Science Foundation of China under Grant 12371112 and Beijing Natural Science Foundation, China under Grant 1212003. The authors want to express their gratitude to the reviewers for careful reading and valuable suggestions, which improve the value of the article.

Author information

Authors and Affiliations

Authors

Contributions

Lu and Feng wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Meiqiang Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Feng, M. On the Number of Positive Solutions for a Higher Order Elliptic System. Qual. Theory Dyn. Syst. 23, 150 (2024). https://doi.org/10.1007/s12346-024-01011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01011-1

Keywords

Mathematics Subject Classification

Navigation