Skip to main content
Log in

Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data \(\varphi \) sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensouilah, A., Dinh, V.D., Zhu, S.: On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential. J. Math. Phys. 59, 101505 (2018)

    Article  MathSciNet  Google Scholar 

  2. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  3. Cazenave, T.: Semilinear Schrödinger Equations. American Mathematics Society, New York (2003)

    Book  Google Scholar 

  4. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, 549–561 (1982)

    Article  MathSciNet  Google Scholar 

  5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R} }^3\). Ann. Math. 167, 767–865 (2008)

    Article  MathSciNet  Google Scholar 

  6. Dinh, V.D.: Global existence and blowup for a class of the focusing nonlinear Schrödinger equation with inverse-square potential. J. Math. Anal. Appl. 468, 270–303 (2018)

    Article  MathSciNet  Google Scholar 

  7. Dinh, V.D.: On nonlinear Schrödinger equations with attractive inverse-power potentials. Topol. Methods Nonlinear Anal. 57, 489–523 (2021)

    MathSciNet  Google Scholar 

  8. Feng, B., Zhang, H.: Stability of standing waves for the fractional Schrödinger-Hartree equation. J. Math. Anal. Appl. 460, 352–364 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fukaya, N.: Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Commun. Pure Appl. Anal. 20, 121–143 (2021)

    Article  MathSciNet  Google Scholar 

  10. Fukaya, N., Ohta, M.: Strong instability of standing waves for the nonlinear Schrödinger equations with attractive inverse power potential. Osaka J. Math. 56, 713–726 (2019)

    MathSciNet  Google Scholar 

  11. Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential Integral Equations 16, 111–128 (2003)

    MathSciNet  Google Scholar 

  12. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliplic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  13. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl. 164, 158–179 (2022)

    Article  MathSciNet  Google Scholar 

  14. Jia, H., Luo, X.: Prescribed mass standing waves for energy critical Hartree equations. Calc. Var. 62, 71 (2023)

    Article  MathSciNet  Google Scholar 

  15. Keel, M., Tao, T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  16. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MathSciNet  Google Scholar 

  17. Li, J., Ma, L.: Extremals to new Gagliardo-Nirenberg inequality and ground states. Appl. Math. Letters 120, 107266 (2021)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Zhao, J.: Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential. Comput. Math. Appl. 79, 303–316 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lu, J., Miao, C., Murphy, J.: Scattering in \(H^1\) for the intercritical NLS with an inverse-square potential. J. Differential Equations 264, 3174–3211 (2018)

    Article  MathSciNet  Google Scholar 

  20. Meng, Y.: Existence of stable standing waves for the nonlinear Schrödinger equation with attractive inverse-power potentials. AIMS Mathematics 7, 5957–5970 (2022)

    Article  MathSciNet  Google Scholar 

  21. Messiah, A.: Quantum Mechanics. North Holland, Amsterdam (1961)

    Google Scholar 

  22. Ohta, M.: Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity. Kodai Math. J. 18, 68–74 (1995)

    Article  MathSciNet  Google Scholar 

  23. Okazawa, N., Suzuki, T., Yokota, T.: Energy methods for abstract nonlinear Schrödinger equations. Evol. Equ. Control Theory 1, 337–354 (2012)

    Article  MathSciNet  Google Scholar 

  24. Ozawa, T.: Remarks on proofs of conservation laws for nonlinear Schrödinger equations. Calc. Var. Partial Differential Equations 25, 403–408 (2006)

    Article  MathSciNet  Google Scholar 

  25. Series, G.: Spectrum of Atomic Hydrogen. Oxford University Press, Oxford (1957)

    Google Scholar 

  26. Zhang, J., Zhu, S.: Stability of standing waves for the nonlinear fractional Schrödinger equation. J. Dynam. Differential Equations. 29, 1017–1030 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zhu, S.: Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities. J. Evol. Equ. 17, 1003–1021 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12261079), and the Outstanding Youth Science Fund of Gansu Province (No. 20JR10RA111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijin Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Feng, B. & Mo, Y. Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential. Qual. Theory Dyn. Syst. 23, 147 (2024). https://doi.org/10.1007/s12346-024-00980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00980-7

Keywords

Navigation