Skip to main content
Log in

Titchmarsh–Weyl Theory for Impulsive Dynamic Dirac System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript


We study the Titchmarsh–Weyl theory of the impulsive dynamic Dirac system. The limit-circle/limit-point classification will be obtained for this system. Later, it has been proven that just like the classical Dirac systems, only the limit-point case occurs in the impulsive dynamic Dirac system. Finally, an example is given for the results in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.


  1. Allahverdiev, B.P., Tuna, H.: Titchmarsh–Weyl theory for Dirac systems with transmission conditions. Mediterr. J. Math. 15(151), 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Allahverdiev, B.P., Tuna, H.: Impulsive Dirac system on time scales. Ukr. Math. J. 75(6), 723–735 (2023)

    Google Scholar 

  3. Aydemir, K., Olgar, H., Mukhtarov, OSh., Muhtarov, F.: Differential operator equations with interface conditions in modified direct sum spaces. Filomat 32(3), 921–931 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bairamov, E., Solmaz, Ş: Scattering theory of Dirac operator with the impulsive condition on whole axis. Math. Meth. Appl. Sci. 44(9), 7732–7746 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bairamov, E., Solmaz, Ş: Spectrum and scattering function of the impulsive discrete Dirac systems. Turkish J. Math. 42, 3182–3194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bairamov, E., Aygar, Y., Eren, B.: Scattering theory of impulsive Sturm-Liouville equation. Filomat 31(17), 5401–5409 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  8. Karahan, D., Mamedov, Kh.R.: On a q-boundary value problem with discontinuity conditions. Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 13(4), 5–12 (2021)

    MATH  Google Scholar 

  9. Karahan, D., Mamedov, Kh.R.: On a q-analogue of the Sturm-Liouville operator with discontinuity conditions. Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauk. 26(3), 407–418 (2022)

    Article  MATH  Google Scholar 

  10. Levitan, B.M., Sargsjan, I.S.: Sturm-Liouville and Dirac operators, Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991)

  11. McLeod, R.: Some Problems in the Theory of Eigenfunctions. Oxford University, Oxford (1966)

    Google Scholar 

  12. Olgar, H., Mukhtarov, OSh., Muhtarov, F.S., Aydemir, K.: The weak eigenfunctions of boundary-value problem with symmetric discontinuities. J. Appl. Anal. 28(2), 275–283 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Titchmarsh, E.C.: Some eigenfunction expansion formulae. Proc. London Math. Soc. S3–11(1), 159–168 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Weidmann, J.: Spectral theory of ordinary differential operators. Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)

  15. Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen. Math. Ann. 68, 222–269 (1910)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations



All authors reviewed the manuscript.

Corresponding author

Correspondence to Hüseyin Tuna.

Ethics declarations

Conflict of inetrest

This work does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahverdiev, B.P., Tuna, H. Titchmarsh–Weyl Theory for Impulsive Dynamic Dirac System. Qual. Theory Dyn. Syst. 22, 148 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Mathematics Subject Classification