Skip to main content
Log in

Stochastic Dynamics of a Two-Species Patch-System With Ratio-Dependent Functional Response

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we analyze the features of a stochastically perturbed two-species predator-prey patch-system with ratio-dependent functional response. We first prove that the system which we investigate has a unique global positive solution. Then, the sufficient criteria for the existence and uniqueness of an ergodic stationary distribution of positive solutions to the system are presented by establishing a series of suitable Lyapunov functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

All data are fully available without restriction.

References

  1. Arditi, R., Salah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)

    Article  Google Scholar 

  2. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio-dependent models. Am. Nat. 138, 1287–1296 (1991)

    Article  Google Scholar 

  3. Arditi, R., Perrin, N., Saiah, H.: Functional response and heterogeneities: an experiment test with clado-cerans. OIKOS 60, 69–75 (1991)

    Article  Google Scholar 

  4. Gutierrez, A.P.: The physiological basis of ratio-dependent predator-prey theory: a methbolic pool model of Nicholson’s blowflies as an example. Ecology 73, 1552–1563 (1992)

    Article  Google Scholar 

  5. Li, Z., Chen, L., Huang, J.: Permanence and periodicity of a delayed ratio-dependent predator-prey model with Holling type functional response and stage structure. J. Comput. Appl. Math. 233, 173–187 (2009)

    Article  MathSciNet  Google Scholar 

  6. Hanski, I.: The functional response of predator: worries bout scale. TREE 6, 141–142 (1991)

    Google Scholar 

  7. Dolman, P.M.: The intensity of interference varies with resource density: evidence from a field study with snow buntings, Plectrophenax nivalis. Oecologia 102, 511–514 (1995)

    Article  Google Scholar 

  8. Jost, C., Arditi, R.: From pattern to process: identifying predator-prey models from time-series data. Popul. Ecol. 43, 229–243 (2001)

    Article  Google Scholar 

  9. Skalski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82, 3083–3092 (2001)

    Article  Google Scholar 

  10. Gao, X., Ishag, S., Fu, S., Li, W., Wang, W.: Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting. Nonlinear Anal. Real World Appl. 51, 102962 (2020)

    Article  MathSciNet  Google Scholar 

  11. Zhang, X., Liu, Z.: Periodic oscillations in age-structured ratio-dependent predator-prey model with Michaelis-Menten type functional response. Phys. D 389, 51–63 (2019)

    Article  MathSciNet  Google Scholar 

  12. Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  13. Jorné, J., Safriel, U.N.: Linear and non-linear diffusion models applied to the behavior of a population of an intertidal snail. J. Theor. Biol. 79, 367–380 (1979)

    Article  Google Scholar 

  14. Liu, M., Deng, M., Du, B.: Analysis of a stochastic logistic model with diffusion. Appl. Math. Comput. 228, 141–146 (2014)

    MathSciNet  Google Scholar 

  15. Gramlich, P., Plitzko, S.J., Rudolf, L., Drossel, B., Gross, T.: The influence of dispersal on a predator-prey system with two habitats. J. Theor. Biol. 398, 150–161 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kang, Y., Kumar Sasmal, S., Messan, K.: A two-patch prey-predator model with predator dispersal driven by the predation strength. Math. Biosci. Eng. 14, 843–880 (2017)

    Article  MathSciNet  Google Scholar 

  17. Xu, R., Chen, L.: Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment. Comput. Math. Appl. 40, 577–588 (2000)

    Article  MathSciNet  Google Scholar 

  18. Kumar, A.: Rajeev: a moving boundary problem with space-fractional diffusion logistic population model and density-dependent dispersal rate. Appl. Math. Model. 88, 951–965 (2020)

    Article  MathSciNet  Google Scholar 

  19. Freedman, H.I., Takeuchi, Y.: Predator survial versus extinction as a function of dispersal in a predator-prey model with pacthy environment. Nonlinear Anal. 13, 993–1002 (1989)

    Article  MathSciNet  Google Scholar 

  20. Huang, R., Wang, Y., Wu, H.: Population abundance in predator-prey systems with predator’s dispersal between two patches. Theor. Popul. Biol. 135, 1–8 (2020)

    Article  Google Scholar 

  21. Cui, J., Takeuchi, Y., Lin, Z.: Permanence and extinction for dispersal population systems. J. Math. Anal. Appl. 298, 73–93 (2004)

    Article  MathSciNet  Google Scholar 

  22. Sasmal, S.K., Ghosh, D.: Effect of dispersal in two-patch prey-predator system with positive density dependence growth of preys. BioSystems 151, 8–20 (2017)

    Article  Google Scholar 

  23. Zhang, S., Zhang, T., Yuan, S.: Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation. Ecol. Complex. 45, 100889 (2021)

    Article  Google Scholar 

  24. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, NJ (2001)

    Book  Google Scholar 

  25. Pimentel, C.E.H., Rodriguez, P.M., Valencia, L.A.: A note on a stage-specific predator-prey stochastic model. Phys. A 553, 124575 (2020)

    Article  MathSciNet  Google Scholar 

  26. Feng, T., Meng, X., Zhang, T., et al.: Analysis of the predator-prey interactions: a stochastic model incorporating disease invasion. Qual. Theory Dyn. Syst. 19, 55 (2020)

    Article  MathSciNet  Google Scholar 

  27. Wang, Z., Deng, M., Liu, M.: Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching. Chaos Solitons Fractals 142, 110462 (2021)

    Article  MathSciNet  Google Scholar 

  28. Zou, X., Lv, J., Wu, Y.: A note on a stochastic Holling-II predator-prey model with a prey refuge. J. Frankl. Inst. Eng. Appl. Math. 357, 4486–4502 (2020)

    Article  MathSciNet  Google Scholar 

  29. Liu, C., Wang, L., He, D., Li, M.: Stochastic dynamical analysis in a hybrid bioeconomic system with telephone noise and distributed delay. J. Frankl. Inst. Eng. Appl. Math. 357, 4922–4948 (2020)

    Article  MathSciNet  Google Scholar 

  30. Roy, J., Barman, D., Alam, S.: Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. BioSystems 197, 104176 (2020)

    Article  Google Scholar 

  31. Ren, Y., Sakthivel, R.: Stochastic differential equations with perturbations driven by G-Brownian motion. Qual. Theory Dyn. Syst. 19, 74 (2020)

    Article  MathSciNet  Google Scholar 

  32. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation. Appl. Math. Comput. 320, 226–239 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  34. Zhao, X., Zeng, Z.: Stationary distribution and extinction of a stochastic ratio-dependent predator-prey system with stage structure for the predator. Phys. A 545, 123310 (2020)

    Article  MathSciNet  Google Scholar 

  35. Qi, H., Leng, X., Meng, X., et al.: Periodic solution and ergodic stationary distribution of SEIS dynamical systems with active and latent patients. Qual. Theory Dyn. Syst. 18, 347–369 (2019)

    Article  MathSciNet  Google Scholar 

  36. Liu, Y., Xu, H., Li, W.: Intermittent control to stationary distribution and exponential stability for hybrid multi-stochastic-weight coupled networks based on aperiodicity. J. Frankl. Inst. Eng. Appl. Math. 356, 7263–7289 (2019)

    Article  MathSciNet  Google Scholar 

  37. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  38. Khasminskii, R.: Stochastic Stability of Differential Equations. Springer, Heidelberg Dordrecht London, New York (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zeng, Z. Stochastic Dynamics of a Two-Species Patch-System With Ratio-Dependent Functional Response. Qual. Theory Dyn. Syst. 21, 58 (2022). https://doi.org/10.1007/s12346-022-00594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00594-x

Keywords

Navigation