Skip to main content
Log in

Puiseux Integrability of Differential Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this work we study polynomial differential systems in the plane and define a new type of integrability that we call Puiseux integrability. As its name indicates, the Puiseux integrability is based on finding and studying the structure of Puiseux series that are solutions of a first order ordinary differential equation related to the original differential system. The necessary and sufficient conditions to have such integrability are given. These conditions are used to solve the integrability problem for quintic Liénard differential systems with a cubic damping function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55. U.S. Government Printing Office, Washington, D.C. (1964)

    MATH  Google Scholar 

  2. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier Science, North-Holland) (2000)

    Google Scholar 

  3. Bruno, A.D.: Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 429–481 (2004)

    Article  Google Scholar 

  4. Christopher, C.J.: Liouvillian first integrals of second order polynomial differential equations. Electron. J. Differ. Equ. 1999(49), 7

  5. Christopher, C.J., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pacific J. Math. 229(1), 63–117 (2007)

    Article  MathSciNet  Google Scholar 

  6. García, I.A., Giné, J.: Generalized cofactors and nonlinear superposition principles. Appl. Math. Lett. 16(7), 1137–1141 (2003)

    Article  MathSciNet  Google Scholar 

  7. García, I.A., Giné, J.: Non-algebraic invariant curves for polynomial planar vector fields. Disc. Contin. Dyn. Syst. 10(3), 755–768 (2004)

    Article  MathSciNet  Google Scholar 

  8. Demina, M.V.: Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems. Phys. Lett. A 382(20), 1353–1360 (2018)

    Article  MathSciNet  Google Scholar 

  9. Demina, M.V.: Invariant algebraic curves for Liénard dynamical systems revisited. Appl. Math. Lett. 84, 42–48 (2018)

    Article  MathSciNet  Google Scholar 

  10. Demina, M.V.: Invariant surfaces and Darboux integrability for non-autonomous dynamical systems in the plane. J. Phys. A 51(50), 505202 (2018)

    Article  MathSciNet  Google Scholar 

  11. Demina, M.V.: The method of Puiseux series and invariant algebraic curves. Commun. Contemp. Math. 2150007 (2020) (in press)

  12. Demina, M.V.: Necessary and sufficient conditions for the existence of invariant algebraic curves. Electron. J. of Qual. Theory Differ. Equ. 48, 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  13. Demina, M.V.: Classifying algebraic invariants and algebraically invariant solutions. Chaos Solit. Fract. 140, 110219 (2020)

    Article  MathSciNet  Google Scholar 

  14. Demina, M.V.: Liouvillian integrability of the generalized Duffing oscillators. Anal. Math. Phys. 11(1), 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  15. Demina, M.V., Kudryashov, N.A.: The Yablonskii-Vorob’ev polynomials for the second Painlevé hierarchy. Chaos Solit. Fract. 32(2), 526–537 (2007)

  16. Demina, M.V., Valls, C.: On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. Proc. Roy. Soc. Edinburgh Sec. A Math. 150(6), 3231–3251 (2020)

  17. García, I.A., Giacomini, H., Giné, J.: Generalized nonlinear superposition principles for polynomial planar vector fields. J. Lie Theory 15(1), 89–104 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Giné, J.: Reduction of integrable planar polynomial differential systems. Appl. Math. Lett. 25(11), 1862–1865 (2012)

    Article  MathSciNet  Google Scholar 

  19. Giné, J.: Liénard equation and its generalizations, Internat. J. Bifur. Chaos Appl. Sci. Eng. 27(6), 1750081 (2017) (7 pp)

  20. Giné, J., Grau, M.: Weierstrass integrability of differential equations. Appl. Math. Lett. 23(5), 523–526 (2010)

    Article  MathSciNet  Google Scholar 

  21. Giné, J., Grau, M., Llibre, J.: On the extensions of the Darboux theory of integrability. Nonlinearity 26(8), 2221–2229 (2013)

    Article  MathSciNet  Google Scholar 

  22. Giné, J., Llibre, J.: Weierstrass integrability in Liénard differential systems. J. Math. Anal. Appl. 377(1), 362–369 (2011)

    Article  MathSciNet  Google Scholar 

  23. Giné, J., Llibre, J.: A note on Liouvillian integrability. J. Math. Anal. Appl. 387(2), 1044–1049 (2012)

    Article  MathSciNet  Google Scholar 

  24. Giné, J., Llibre, J.: Formal Weierstrass non-integrability criterion for some classes of polynomial differential systems in \({\mathbb{C}}^2\), Internat. J. Bifur. Chaos Appl. Sci. Eng. 30(4), 2050064 (2020)

    Article  Google Scholar 

  25. Giné, J., Llibre, J.: Strongly formal weierstrass non-integrability for polynomial differential systems in \({C}^2\). Electron. J. Qual. Theory Differ. Equ. (1), 1–16 (2020)

  26. Giné, J., Santallusia, X.: Abel differential equations admitting a certain first integral. J. Math. Anal. Appl. 370(1), 187–199 (2010)

    Article  MathSciNet  Google Scholar 

  27. Liénard, A.: Etude des oscillations entretenues, Revue générale de l’électricité 23, 901–912 and 946–954 (1928)

  28. Nicklason, G.R.: An Abel type cubic system. Electron. J. Differ. Equ. (189) ( 2005) (17 pp)

  29. Odani, K.: The limit cycle of the van der Pol equation is not algebraic. J. Differ. Equ. 115(1), 146–152 (1995)

    Article  MathSciNet  Google Scholar 

  30. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992)

    Article  MathSciNet  Google Scholar 

  31. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1(701–710), 754–762 (1920)

    Google Scholar 

  32. Van der Pol, B.: On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. J. Sci. 2(7), 978–992 (1927)

    Google Scholar 

  33. Zhang, X.: Liouvillian integrability of polynomial differential systems. Trans. Am. Math. Soc. 368(1), 607–620 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by Russian Science Foundation Grant No. 19-71-10003. The second author is partially supported by the Agencia Estatal de Investigación grant PID2020-113758GB-I00 and an AGAUR (Generalitat de Catalunya) grant number 2017SGR 1276. The third author is partially supported by FCT/Portugal through projects UIDB/04459/2020 and UIDP/04459/2020.

Author information

Authors and Affiliations

Authors

Contributions

authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maria V. Demina, Jaume Giné or Claudia Valls.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, M.V., Giné, J. & Valls, C. Puiseux Integrability of Differential Equations. Qual. Theory Dyn. Syst. 21, 35 (2022). https://doi.org/10.1007/s12346-022-00565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00565-2

Keywords

Navigation