Skip to main content
Log in

Limit Cycle Bifurcations in Perturbations of a Reversible Quadratic System with a Non-rational First Integral

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates the Hopf cyclicity of a piecewise smooth quadratic polynomial system by Melnikov function method, whose unperturbed system is a concrete reversible quadratic system with a center at the origin and with a non-rational first integral. By comparing the obtained result for the piecewise case with the result for the smooth case, it shows that the piecewise system can have at least four more limit cycles around the origin than the smooth one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chicone, C., Jacobs, M.: Bifurcation of limit cycles from quadratic isochronous. J. Differ. Equ. 91, 268–326 (1991)

    Article  Google Scholar 

  2. Chen, F., Li, C., Llibre, J., Zhang, Z.: A unified proof on the weak Hilbert 16th problem for \(n=2\). J. Differ. Equ. 221, 309–342 (2006)

    Article  MathSciNet  Google Scholar 

  3. Cen, X., Liu, C., Yang, L., Zhang, M.: Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems. J. Differ. Equ. 265, 6083–6126 (2018)

    Article  MathSciNet  Google Scholar 

  4. Cruz, L., Novaes, D., Torregrosa, J.: New lower bound for the Hilbert number in piecewise quadratic differential systems. J. Differ. Equ. 266, 4170–4203 (2019)

    Article  MathSciNet  Google Scholar 

  5. Castillo, J., Llibre, J., Verduzco, F.: The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems. Nonlinear Dyn. 90, 1829–1840 (2017)

    Article  MathSciNet  Google Scholar 

  6. Emilio, F., Enrique, P., Francisco, T.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gautier, S., Gavrilov, L., Iliev, I.: Perturbatins of quadratic centers of genus one. Discrete Contin. Dyn. Syst. 25, 511–35 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hilbert, D.: Mathematial problems (M. Newton, Transl.). Bull. Amer. Math. Soc. 8, 437–479 (1902)

  9. Han, M.: On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput. 7, 788–794 (2017)

    MathSciNet  Google Scholar 

  10. Han, M., Romanovski, V.G.: On the number of limit cycles of polynomial Liénard systems. Nonlinear Anal. Real World Appl. 14, 1655–1668 (2013)

    Article  MathSciNet  Google Scholar 

  11. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Iliev, I.: Perturbations of quadratic centers. Bull. Sci. Math. 122, 107–161 (1998)

    Article  MathSciNet  Google Scholar 

  13. Li, J.: Limit cycles bifurcated from a reversible quadratic center. Qualit. Theory Dyn. Syst. 6, 205–215 (2005)

    Article  MathSciNet  Google Scholar 

  14. Liu, C.: Limit cycles bifurcated from some reversible quadratic centers with a non-algebraic first integral. Nonlinearity 25, 1653–1660 (2012)

    Article  MathSciNet  Google Scholar 

  15. Llibre, J., Ramírez, R., Ramírez, V., Sadovskaia, N.: The 16th Hilbert problem restricted to circular algebraic limit cycles. J. Differ. Equ. 260, 5726–5760 (2016)

    Article  MathSciNet  Google Scholar 

  16. Llibre, J., Tian, Y.: Algebraic limit cycles bifurcating from algebraic ovals of quadratic centers. Int. J. Bifurcat. Chaos 28, 1850145 (2018)

    Article  MathSciNet  Google Scholar 

  17. Llibre, J., Tang, Y.: Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete Contin. Dyn. Syst. Ser. B 24, 1769–1784 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Li, C., Llibre, J.: A uniform study on the cyclicity of period annulus of the reversible quadratic Hamiltonian systems. J. Dyn. Differ. Equ. 16, 271–295 (2004)

    Article  Google Scholar 

  19. Li, C., Li, W., Llibre, J., Zhang, Z.: Linear estimate for the number of zeros of Abelian integrals for quadratic isochronous centres. Nonlinearity 13, 1775–1800 (2000)

    Article  MathSciNet  Google Scholar 

  20. Loud, W.: Behavior of the period of solutions of certain plane autonomous systems near centers. Contrib. Differ. Equ. 3, 21–36 (1964)

    MathSciNet  MATH  Google Scholar 

  21. Peng, L., Gao, Y., Feng, Z.: Limit cycles bifurcating from piecewise quadratic systems separated by a straight line. Nonlinear Anal. 196, 111802 (2020)

    Article  MathSciNet  Google Scholar 

  22. Schlomiuk, D.: Algebraic particular integrals integrability and the problem of the center. Trans. Am. Math. Soc. 338, 737–754 (1993)

    Article  MathSciNet  Google Scholar 

  23. Tian, Y., Han, M.: Hopf and homoclinic bifurcations for near-Hamiltonian systems. J. Differ. Equ. 262, 3214–3234 (2017)

    Article  MathSciNet  Google Scholar 

  24. Xiong, Y., Han, M.: Limit cycle bifurcations in a class of perturbed piecewise smooth systems. Appl. Math. Comput. 242, 47–64 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Xiong, Y., Han, M.: New lower bounds for the Hilbert number of polynomial systems of Liénard type. J. Differ. Equ. 257, 2565–2590 (2014)

    Article  Google Scholar 

  26. Xiong, Y., Han, M., Romanovski, V.G.: The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles. Int. J. Bifurcat. Chaos 27, 1750126 (14 pages) (2017)

    MathSciNet  MATH  Google Scholar 

  27. Xiong, Y.: Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters. J. Math. Anal. Appl. 421, 260–275 (2015)

    Article  MathSciNet  Google Scholar 

  28. Xiong, Y., Han, M.: Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters. Chaos Solitons Fractals 68, 20–29 (2014)

    Article  MathSciNet  Google Scholar 

  29. Yang, J., Yu, P.: Nine limit cycles around a singular point by perturbing a cubic Hamiltonian system with a nilpotent center. Appl. Math. Comput. 298, 141–152 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Yang, J., Zhao, L.: Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations. J. Differ. Equ. 264, 5734–5757 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zoła̧dek, H.: Quadratic systems with center and their perturbations. J. Differ. Equ. 109, 223–273 (1994)

    Article  MathSciNet  Google Scholar 

  32. Zoła̧dek, H.: Melnikov functions in quadratic perturbations of generalized Lotka-Volterra systems. J. Dyn. Control Syst. 21, 573–603 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee and the Editor for their valuable suggestions which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqin Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by National Natural Science Foundation of China (11701289, 11501055) and Natural Science Foundation of Jiangsu Province (BK20170936).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Cheng, R. & Li, N. Limit Cycle Bifurcations in Perturbations of a Reversible Quadratic System with a Non-rational First Integral. Qual. Theory Dyn. Syst. 19, 97 (2020). https://doi.org/10.1007/s12346-020-00434-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00434-w

Keywords

Mathematics Subject Classification

Navigation