Multiperiodicity to a Certain Delayed Predator–Prey Model


The delayed predator–prey system with generalized non-monotonic functional responses and stage structure was investigated in the present paper. By virtue of Mawhin’s coincidence degree and the application of inequalities technique, we are successful to generate some novel conditions to guarantee that the system has at least two positive periodic solutions. It is shown that all parameters of the system have effects on the existence of positive periodic solutions and the period of the coefficients can also affect the existence of positive periodic solutions. In the end, an illustrative example is presented to the feasibility of the main results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotech. Bioeng 10, 707–723 (1968)

    Article  Google Scholar 

  2. 2.

    Bian, F., Zhao, W., Song, Y., et al.: Dynamical analysis of a class of prey–predator model with Beddington–DeAngelis functional response, stochastic perturbation, and impulsive toxicant input. Complexity 2017, 1–18 (2017).

    MATH  Article  Google Scholar 

  3. 3.

    Cao, J., Feng, G., Wang, Y.: Multistability and multiperiodicity of delayed Cohen–Grossberg neural networks with a general class of activation functions. Phys. D Nonlinear Phenom. 237, 1734–1749 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Chen, F., Wang, H., Lin, Y., Chen, W.: Global stability of a stage-structured predator–prey system. Appl. Math. Comput. 223, 45–53 (2013)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Cheng, H., Zhang, T.: A new predator–prey model with a profitless delay of digestion and impulsive perturbation on the prey. Appl. Math. Comput. 217(22), 9198–9208 (2011)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chi, M., Zhao, W.: Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment. Adv. Differ. Equ. 2018(1), 120 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Devi, S.: Effects of prey refuge on a ratio-dependent predator–prey model with stage-structure of prey population. Appl. Math. Model. 37, 4337–4349 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Prob. 5(1), 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Feng, T., Meng, X., Liu, L., et al.: Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model. J. Inequal. Appl. 2016(1), 327 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Gains, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    Google Scholar 

  11. 11.

    Georgescu, P., Hsieh, Y.H.: Global dynamics of a predator–prey model with stage structure for the predator. SIAM J. Appl. Math. 67, 1379–1395 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Han, M.: On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput. 7(2), 788–794 (2017)

    MathSciNet  Google Scholar 

  13. 13.

    Han, M., Hou, X., Sheng, L., Wang, C.: Theory of rotated equations and applications to a population model. Discret. Contin. Dyn. Syst. A 38(4), 2171–2185 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Huang, C., Cao, J.: Comparative study on bifurcation control methods in a fractional-order delayed predator–prey system. Sci. China Technol. Sci. 61(7), 1–10 (2018)

    Article  Google Scholar 

  15. 15.

    Huang, C., Cao, J., Xiao, M., et al.: Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Appl. Math. Comput. 293, 293–310 (2017)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Li, Z., Han, M., Chen, F.: Almost periodic solutions of a discrete almost periodic logistic equation with delay. Appl. Math. Comput. 232, 743–751 (2014)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Liu, G., Wang, X., Meng, X., Gao, S.: Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps. Complexity (2017).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Liu, X., Han, M.: Chaos and Hopf bifurcation analysis for a two species predator–prey system with prey refuge and diffusion. Nonlinear Anal. Real World Appl. 12(2), 1047–1061 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Liu, L., Meng, X.: Optimal harvesting control and dynamics of two-species stochastic model with delays. Adv. Differ. Equ. 2017(1), 18 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Lv, X., Wang, L., Meng, X.: Global analysis of a new nonlinear stochastic differential competition system with impulsive effect. Adv. Differ. Equ. 2017(1), 296 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Meng, X., Zhang, L.: Evolutionary dynamics in a Lotka–Volterra competition model with impulsive periodic disturbance. Math. Methods Appl. Sci. 39(2), 177–188 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Meng, X., Chen, L., Wu, B.: A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Anal. Real World Appl. 11(1), 88–98 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Meng, X., Liu, R., Zhang, T.: Adaptive dynamics for a non-autonomous Lotka–Volterra model with size-selective disturbance. NoNonlinear Anal. Real World Appl. 16, 202–213 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Meng, X., Zhao, S., Zhang, W.: Adaptive dynamics analysis of a predator–prey model with selective disturbance. Appl. Math. Comput. 266, 946–958 (2015)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Wang, F., Kuang, Y., Ding, C., Zhang, S.: Stability and bifurcation of a stage-structured predator–prey model with both discrete and distributed delays. Chaos Solitons Fractals 46, 19–27 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Wang, J., Cheng, H., Meng, X., et al.: Geometrical analysis and control optimization of a predator–prey model with multi state-dependent impuls. Adv. Differ. Equ. 2017(1), 252 (2017)

    MATH  Article  Google Scholar 

  27. 27.

    Wang, J., Cheng, H., Li, Y., Zhang, X.: The geometrical analysis of a predator–prey model with multi-stage dependent impulses. J. Appl. Anal. Comput. 8(2), 427–442 (2018)

    MathSciNet  Google Scholar 

  28. 28.

    Wolkowicz, G.S.K., Zhu, H., Campbell, S.: Bifurcation analysis of a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63, 636–682 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Xia, Y., Han, M.: Multiple periodic solutions of a ratio-dependent predator–prey model. Chaos Solitons Fractals 39(3), 1100–1108 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Xia, Y., Cao, J., Cheng, S.: Multiple periodic solutions of a delayed stage-structured predator–prey model with non-monotone functional responses. Appl. Math. Model. 31, 1947–1959 (2007a)

    MATH  Article  Google Scholar 

  31. 31.

    Xu, R., Chaplain, M.A.J., Davidson, F.A.: Permanence and periodicity of a delayed ratio- dependent predator–prey model with stage structure. J. Math. Anal. Appl. 303, 602–621 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Yu, P., Han, M., Xiao, D.: Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka–Volterra systems. J. Math. Anal. Appl. 436(1), 521–555 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Zhang, T., Meng, X., Song, Y., et al.: A stage-structured predator–prey SI model with disease in the prey and impulsive effects. Math. Modell. Anal. 18(4), 505–528 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Zhang, T., Ma, W., Meng, X., et al.: Periodic solution of a prey–predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Zhang, T., Meng, X., Zhang, T.: Global analysis for a delayed SIV model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479 (2016)

    MathSciNet  Google Scholar 

  36. 36.

    Zhang, W., Bai, Z., Sun, S.: Extremal solutions for some periodic fractional differential equations. Adv. Differ. Equ. 2016(1), 1–8 (2016)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Zhang, T., Zhang, T., Meng, X.: Stability analysis of a Chemostat model with maintenance energy. Appl. Math. Lett. 68, 1–7 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Zhuo, X.: Global attractability and permanence for a new stage-structured delay impulsive ecosystem. J. Appl. Anal. Comput. 8(2), 457–457 (2018)

    MathSciNet  Google Scholar 

  39. 39.

    Zhuo, X., Zhang, F.: Stability for a new discrete ratio-dependent predator–prey system. Qual. Theory Dyn. Syst. 17(1), 189–202 (2018)

    MathSciNet  MATH  Article  Google Scholar 

Download references


The authors would like to thank the editors and anonymous reviewers for their constructive suggestions towards upgrading the quality of the manuscript.

Author information



Corresponding author

Correspondence to Xiang-Lai Zhuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (60672085, 51804179), Natural Foundation of Shandong Province (ZR2016EEB07) and the Reform of Undergraduate Education in Shandong Province Research Projects (2015M139)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhuo, X. & Zhang, F. Multiperiodicity to a Certain Delayed Predator–Prey Model. Qual. Theory Dyn. Syst. 18, 793–811 (2019).

Download citation


  • Multiperiodicity
  • Predator–prey model
  • Stage structure
  • Generalized non-monotone functional response

Mathematics Subject Classification

  • 34C25
  • 92B05