On Dynamics of Triangular Maps of the Square with Zero Topological Entropy


It is known that, for interval maps, zero topological entropy is equivalent with bounded topological sequence entropy as well as with the non-existence of Li–Yorke scrambled triples. In this paper we answer the question how the situation changes when triangular maps of the unit square are concerned instead of interval maps.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Block, L., Coppel, W.A.: Dynamics in One Dimension. Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992)

    Google Scholar 

  2. 2.

    Bowen, R.: Entropy for group endomorphism and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cánovas, J.S.: Topological sequence entropy of interval maps. Nonlinearity 17, 49–56 (2004)

    MathSciNet  Article  Google Scholar 

  4. 4.

    de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (2012). ISBN 3642780431, 9783642780431

    Google Scholar 

  5. 5.

    Downarowicz, T.: Entropy in Dynamical System. Cambridge University Press, Cambridge (2011). ISBN 1139500872, 9781139500876

    Google Scholar 

  6. 6.

    Downarowicz, T.: Minimal subsystems of triangular maps of type $2^\infty $. Conclusion of the Sharkovsky classification program. Chaos Solitons Fractals 49, 61–71 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Downarowicz, T., Štefánková, M.: Embedding Toeplitz systems in triangular maps: the last but one problem of the Sharkovsky classification program. Chaos Solitons Fractals 45, 1566–1572 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Goodman, T.N.T.: Topological sequence entropy. Proc. Lond. Math. Soc. 29, 331–350 (1974)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Huang, W., Li, J., Ye, X.: Stable sets and mean Li–Yorke chaos in positive entropy systems. J. Funct. Anal. 266, 3377–3394 (2014)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kočan, Z.: The problem of classification of triangular maps with zero topological entropy. Ann. Math. Sil. 13, 181–192 (1999)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4(2–3), 205–233 (1996)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Li, J.: Chaos and entropy for interval maps. J. Dyn. Differ. Equ. 23, 333–352 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Štefánková, M.: The Sharkovsky program of classification of triangular maps—a survey. Topol. Proc. 48, 135–150 (2016)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Xiong, J.: Chaos in topological transitive systems. Sci. China A 48, 929–939 (2005)

    MathSciNet  Article  Google Scholar 

Download references


The research was supported by Grant SGS/18/2016 from the Silesian University in Opava. Support of this institution is gratefully acknowledged. The author thanks his supervisor Professor Marta Štefánková for valuable suggestions and comments.

Author information



Corresponding author

Correspondence to Vojtěch Pravec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pravec, V. On Dynamics of Triangular Maps of the Square with Zero Topological Entropy. Qual. Theory Dyn. Syst. 18, 761–768 (2019). https://doi.org/10.1007/s12346-018-00311-7

Download citation


  • Triangular maps
  • Topological entropy
  • Topological sequence entropy
  • LY-scrambled triple

AMS Subject Classification:

  • 54H20
  • 37B40
  • 37O45