Skip to main content
Log in

Molecular Chains Interacting by Lennard-Jones and Coulomb Forces

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study equations for the mechanical movement of chains of identical particles in the plane interacting with their nearest-neighbors by bond stretching and by van der Waals and Coulomb forces. We find collinear and circular equilibria as minimizers of the energy potential for chains with Neumann and periodic boundary conditions. We prove global bifurcation of periodic brake orbits from these equilibria applying the global Rabinowitz alternative. These results are complemented with numeric computations for ranges of parameters that include carbon atoms among other molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balanov, Z., Krawcewicz, W., Rybicki, S., Steinlein, H.: A short treatise on the equivariant degree theory and its applications. J. Fixed Point Theory Appl. 8, 1–74 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Lecture Notes in Mathematics, vol. 1560. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  3. Best, R., Zhu, X., Shim, J., Lopes, P., Mittal, J., Feig, M., Mackerell, A.D.: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012)

    Article  Google Scholar 

  4. García-Azpeitia, C., Ize, J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ. Equ. 254, 2033–2075 (2013)

    Article  MATH  Google Scholar 

  5. García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the \(n\)-body problem. J. Differ. Equ. 252, 5662–5678 (2012)

    Article  MATH  Google Scholar 

  6. García-Azpeitia, C., Ize, J.: Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. DCDS-S 6, 975–983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory II. Appl. Math. Sci., vol. 51. Springer, Berlin (1986).

  8. Ize, J., Vignoli, A.: Equivariant Degree Theory. De Gruyter Series in Nonlinear Analysis and Applications, vol. 8. Walter de Gruyter, Berlin (2003)

    MATH  Google Scholar 

  9. Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, vol. 6. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  10. Martínez-Farías, F., Panayotaros, P., Olvera, A.: Weakly nonlinear localization for a 1-D FPU chain with clustering zones. Eur. Phys. J. Spec. Top. 223, 2943–2952 (2014)

    Article  Google Scholar 

  11. Montaldi, J., Roberts, R.: Relative equilibria of molecules. J. Nonlinear Sci. 9, 53–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monticelli, L., Tieleman, D.: Force fields for classical molecular dynamics. Methods Mol. Biol. 924, 197–213 (2013)

    Article  Google Scholar 

  13. Moeckel, R., Montgomery, R., Venturelli, A.: From brake to syzygy. Arch. Ration. Mech. Anal. 204, 1009–1060 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Palais, R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lopes, P., Guvench, O., MacKerell, A.: Current status of protein force fields for molecular dynamics simulations. Mol. Model. Protein Methods Mol. Biol. 1215, 47–71 (2014)

    Article  Google Scholar 

  16. Rabinowitz, P.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vanderbauwhede, A.: Local Bifurcation and Symmetry. Research Notes in Mathematics, vol. 75. Pitman Advanced Publishing Program, Boston (1982)

    MATH  Google Scholar 

Download references

Acknowledgements

C. García is grateful to E. Perez-Chavela and S. Rybicky for useful discussions about this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García-Azpeitia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Azpeitia, C., Tejada-Wriedt, M. Molecular Chains Interacting by Lennard-Jones and Coulomb Forces. Qual. Theory Dyn. Syst. 16, 591–608 (2017). https://doi.org/10.1007/s12346-016-0221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-016-0221-0

Keywords

Mathematics Subject Classification

Navigation