Abstract
We study equations for the mechanical movement of chains of identical particles in the plane interacting with their nearest-neighbors by bond stretching and by van der Waals and Coulomb forces. We find collinear and circular equilibria as minimizers of the energy potential for chains with Neumann and periodic boundary conditions. We prove global bifurcation of periodic brake orbits from these equilibria applying the global Rabinowitz alternative. These results are complemented with numeric computations for ranges of parameters that include carbon atoms among other molecules.
Similar content being viewed by others
References
Balanov, Z., Krawcewicz, W., Rybicki, S., Steinlein, H.: A short treatise on the equivariant degree theory and its applications. J. Fixed Point Theory Appl. 8, 1–74 (2010)
Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Lecture Notes in Mathematics, vol. 1560. Springer, Berlin (1993)
Best, R., Zhu, X., Shim, J., Lopes, P., Mittal, J., Feig, M., Mackerell, A.D.: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012)
García-Azpeitia, C., Ize, J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ. Equ. 254, 2033–2075 (2013)
García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the \(n\)-body problem. J. Differ. Equ. 252, 5662–5678 (2012)
García-Azpeitia, C., Ize, J.: Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. DCDS-S 6, 975–983 (2013)
Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory II. Appl. Math. Sci., vol. 51. Springer, Berlin (1986).
Ize, J., Vignoli, A.: Equivariant Degree Theory. De Gruyter Series in Nonlinear Analysis and Applications, vol. 8. Walter de Gruyter, Berlin (2003)
Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, vol. 6. American Mathematical Society, Providence (2001)
Martínez-Farías, F., Panayotaros, P., Olvera, A.: Weakly nonlinear localization for a 1-D FPU chain with clustering zones. Eur. Phys. J. Spec. Top. 223, 2943–2952 (2014)
Montaldi, J., Roberts, R.: Relative equilibria of molecules. J. Nonlinear Sci. 9, 53–88 (1999)
Monticelli, L., Tieleman, D.: Force fields for classical molecular dynamics. Methods Mol. Biol. 924, 197–213 (2013)
Moeckel, R., Montgomery, R., Venturelli, A.: From brake to syzygy. Arch. Ration. Mech. Anal. 204, 1009–1060 (2012)
Palais, R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)
Lopes, P., Guvench, O., MacKerell, A.: Current status of protein force fields for molecular dynamics simulations. Mol. Model. Protein Methods Mol. Biol. 1215, 47–71 (2014)
Rabinowitz, P.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)
Vanderbauwhede, A.: Local Bifurcation and Symmetry. Research Notes in Mathematics, vol. 75. Pitman Advanced Publishing Program, Boston (1982)
Acknowledgements
C. García is grateful to E. Perez-Chavela and S. Rybicky for useful discussions about this problem.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García-Azpeitia, C., Tejada-Wriedt, M. Molecular Chains Interacting by Lennard-Jones and Coulomb Forces. Qual. Theory Dyn. Syst. 16, 591–608 (2017). https://doi.org/10.1007/s12346-016-0221-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12346-016-0221-0