Qualitative Theory of Dynamical Systems

, Volume 16, Issue 1, pp 71–100 | Cite as

Generalizing Taylor Expansion Series Through Succeeding Initial Value Problems

Article

Abstract

In this paper, the classical Taylor’s expansion series for a given continuous and k-times differentiable real function is obtained as the unique solution of a certain class of initial value problems. Further, through some subsequent generalizations regarding that problem in terms of certain derivative-based operators, we obtain some generalized Taylor’s type polynomial expansions, including the Taylor–Aleph series, which remains as particular cases. In addition to that, some analytical properties about these involved operators are also provided.

Keywords

Initial value problem Taylor expansion series Laplace transform 

Mathematics Subject Classification

Primary 41A58 Secondary 26E10 26A06 30K05 

References

  1. 1.
    Bernoulli, J.: Additamentum effectionis omnium quadraturarum et rectificationum curvarum per seriem quandum generalissimam. Acta Erud. 437–441 (1694) (reprinted in J. Bernoulli, pp. 125–128, 1744)Google Scholar
  2. 2.
    Bourbaki, N.: Elements of Mathematics: Functions of a Real Variable—Elementary Theory. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Chen, H., Tian, S.: Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differ. Equ. 258(1–2), 4424–4442 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Edwards Jr, C.H.: The Historical Development of the Calculus. Springer, New York (1979)CrossRefMATHGoogle Scholar
  5. 5.
    Fischer, E.: Intermediate Real Analysis. Springer, New York (1983)CrossRefMATHGoogle Scholar
  6. 6.
    Gregory, J.: Letter to Collins, 23 November 1670. In: Turnbull, H.W. (Ed.) James Gregory Tercentenary Memorial Volume, pp. 118–133. G. Bell and Sons, London (1939)Google Scholar
  7. 7.
    Gregory, J.: Letter to Gideon Shaw, 29 January 1671. In: Turnbull, H.W. (Ed.) James Gregory Tercentenary Memorial Volume, pp. 350–357. G. Bell and Sons, London (1939)Google Scholar
  8. 8.
    Kaikina, E.I.: Inhomogeneous Neumann initial boundary value problem for the nonlinear Schrödinger equation. J. Differ. Equ. 255(10), 3338–3356 (2013)CrossRefMATHGoogle Scholar
  9. 9.
    Liang, J.: A singular initial value problem and self-similar solutions of a nonlinear dissipative wave equation. J. Differ. Equ. 246(2), 819–844 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    López, J.L., Nico, M.: Temme, multi-point Taylor expansions of analytic functions. Trans. Am. Math. Soc. 356(11), 4323–4342 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    López, B., Marco, J.M., Parcet, J.: Taylor series for the Askey–Wilson operator and classical summation formulas. Proc. Am. Math. Soc. 134(8), 2259–2270 (2006)Google Scholar
  12. 12.
    Newton, I.: The Mathematical Papers of Isaac Newton, vol 1, pp. 96–111. Cambridge University Press, Cambridge (1967–1981)Google Scholar
  13. 13.
    Stillwell, J.: Mathematics and Its History. Springer, New York (1989)CrossRefMATHGoogle Scholar
  14. 14.
    Struik, D.J.: A Source Book in Mathematics, 1200–1800. Harvard University Press, Cambridge (1969)MATHGoogle Scholar
  15. 15.
    Taylor, B.: Methodus incrementorum directa et inversa. London (1715)Google Scholar
  16. 16.
    Turnbull, H.W. (ed.): James Gregory Tercentenary Memorial Volume. G. Bell and Sons, London (1939)MATHGoogle Scholar
  17. 17.
    Wallis, J.: Arithmetica infinitorum. Opera 1, 355–478 (1656)Google Scholar
  18. 18.
    Yang, T.: Taylor expansion of an Eisenstein series. Trans. Am. Math. Soc. 355(7), 2663–2674 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.University Centre of Defence at the Spanish Air Force Academy, MDE-UPCTMurciaSpain
  2. 2.Departamento de Matemática Aplicada y Estadística, Hospital de MarinaUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations