Skip to main content
Log in

Asymptotic Stability of Coupled Oscillators with Time-Dependent Damping

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The present paper is devoted to an investigation on the asymptotic stability for the damped oscillators with multiple degrees of freedom,

$$\begin{aligned} {\mathbf {x}}'' + h(t)\,{\mathbf {x}}' + A\,{\mathbf {x}} = {\mathbf {0}} \end{aligned}$$

and its generalization

$$\begin{aligned} M\,{\mathbf {x}}'' + C(t)\,{\mathbf {x}}' + K\,{\mathbf {x}} = {\mathbf {0}}, \end{aligned}$$

where \(h: [0,\infty ) \rightarrow [0,\infty )\) is a function, A, M and K are \(n \times n\) real constant matrices. and C is an \(n \times n\) matrix whose elements are real-valued functions. The functions h and C correspond to the damping coefficient and the damping matrix, respectively. The origin \(({\mathbf {x}},{\mathbf {x}}') = ({\mathbf {0}},{\mathbf {0}})\) is the only equilibrium of the above-mentioned damped oscillators. Necessary and sufficient conditions are presented for the equilibrium of these oscillators to be asymptotically stable. The obtained conditions are given by the forms of certain growth conditions concerning the damping h and C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari, S., Phani, A.S.: Experimental indentification of of generalized proportional viscous damping matrix. J. Vib. Acoust. 131, 011008 (2009). (12 pp)

  2. Angeles, J., Ostrovskaya, S.: The proportional-damping matrix of arbitrarily damped linear mechanical systems. Trans. ASME J. Appl. Mech. 69, 649–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awrejcewicz, J.: Bifurcation and Chaos in Coupled Oscillators. World Scientific Publishing Co. Pte. Ltd., Singapore (1991)

    Book  MATH  Google Scholar 

  4. Brauer, F., Nohel, J.: The Qualitative Theory of Ordinary Differential Equations. W.A. Benjamin, New York (1969). [(revised) Dover, New York (1989)]

  5. Caughey, T.K., O’Kelly, M.E.J.: Classical normal modes in damped linear dynamic systems. Trans. ASME J. Appl. Mech. 32, 583–588 (1965)

    Article  MathSciNet  Google Scholar 

  6. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. Heath, Boston (1965)

    MATH  Google Scholar 

  7. Craig Jr, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  8. Hatvani, L.: A generalization of the Barbashin–Krasovskij theorems to the partial stability in nonautonomous systems. In: Qualitative Theory of Differential Equations, vol. I (Szeged, 1979). Colloq. Math. Soc. János Bolyai, vol. 30, pp. 381–409. North-Holland, Amsterdam (1981)

  9. Hatvani, L.: On partial asymptotic stability and instability. III (Energy-like Ljapunov functions). Acta Sci. Math. (Szeged) 49, 157–167 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Am. Math. Soc. 124, 415–422 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differ. Equ. 119, 209–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, J., Fu, Z.-F.: Modal Analysis. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  13. Maia, N.M.M., Silva, J.M.M.: Theoretical and Experimental Modal Analysis. Mechanical Engineering Research Studies: Engineering Dynamics Series 9. Research Studies Press Ltd., Baldock (1997)

  14. Matrosov, V.M.: On the stability of motion. Prikl. Mat. Meh. 26, 885–895 (1962). [Translated as J. Appl. Math. Mech. 26, 1337–1353 (1962)]

  15. Marguerre, K., Woelfel, H.: Mechanics of Vibrations. Mechanics of Structural Systems Series 2. Springer, The Netherlands (1979)

    Google Scholar 

  16. Michel, A.N., Hou, L., Liu, D.: Stability Dynamical Systems: Continuous, Discontinuous, and Discrete Systems. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  17. Paz, M., Leigh, W.: Structural Dynamics: Theory and Computation, 5th edn. Springer, New York (2004)

    Book  Google Scholar 

  18. Rouche, N., Habets, P., Laloy, M.: Stability theory by Liapunov’s direct method. In: Applied Mathematical Sciences, vol. 22. Springer, New York (1977)

  19. Smith, R.A.: Asymptotic stability of \(x^{\prime \prime } + a(t)x^{\prime } + x = 0\). Q. J. Math. Oxf. (2) 12, 123–126 (1961)

    Article  MATH  Google Scholar 

  20. Sugie, J.: Global asymptotic stability for damped half-linear oscillators. Nonlinear Anal. 74, 7151–7167 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sugie, J., Hata, S., Onitsuka, M.: Global asymptotic stability for half-linear differential systems with periodic coefficients. J. Math. Anal. Appl. 371, 95–112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wintner, A.: Asymptotic integrations of the adiabatic oscillator in its hyperbolic range. Duke Math. J. 15, 55–67 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  23. Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics Publishing, Bristol (2001)

    Book  MATH  Google Scholar 

  24. Yoshizawa, T.: Stability theory and the existence of periodic solutions and almost periodic solutions. In: Applied Mathematical Sciences, vol. 14. Springer, New York (1975)

  25. Yuan, Y.: An inverse eigenvalue problem for damped gyroscopic second-order systems. Math. Probl. Eng. 2009, Art. ID 725616, 10 pp. (2009)

  26. Zheng, W., Sugie, J.: Parameter diagram for global asymptotic stability of damped half-linear oscillators. Monatsh Math. doi:10.1007/s00605-014-0695-2

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research, No. 25400165, from the Japan Society for the Promotion of Science. The author thanks the anonymous reviewer for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitsuro Sugie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugie, J. Asymptotic Stability of Coupled Oscillators with Time-Dependent Damping. Qual. Theory Dyn. Syst. 15, 553–573 (2016). https://doi.org/10.1007/s12346-015-0175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-015-0175-7

Keywords

Mathematics Subject Classification

Navigation