Qualitative Theory of Dynamical Systems

, Volume 12, Issue 2, pp 323–334 | Cite as

On \(C^1\)-Generic Chaotic Systems in Three-Manifolds

  • Mário BessaEmail author


Let \(M\) be a closed \(3\)-dimensional Riemannian manifold. We exhibit a \(C^1\)-residual subset of the set of volume-preserving \(3\)-dimensional flows defined on very general manifolds \(M\) such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case.


Vector Field Lyapunov Exponent Closed Orbit Topological Constraint Baire Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thanks the referee for a thorough review and useful comments that helped improve the paper. The author was partially supported by National Funds through FCT-“Fundação para a Ciência e a Tecnologia”, project PEst-OE/MAT/UI0212/2011 and also the project PTDC/MAT/099493/2008.


  1. 1.
    Abdenur, F., Avila, A., Bochi, J.: Robust transitivity and topological mixing for \(C^1\)-flows. Proc. AMS 132(3), 699–705 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdenur, F., Crovisier, S.: Transitivity and topological mixing for \(C^1\) diffeomorphisms. Essays in Mathematics and its Applications: In: Honor of Stephen Smale’s 80th Birthday, Springer, pp. 1–16 (2012)Google Scholar
  3. 3.
    Abramov, L.: On the entropy of a flow (Russian). Dokl. Akad. Nauk SSSR 128, 873–875 (1959)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Anosov, D.V.: Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov Math. Inst. 90, 1–235 (1967)MathSciNetGoogle Scholar
  5. 5.
    Anosov, D.V., Sinai, Y.: Some smooth ergodic systems. Russ. Math. Surv. 22(5), 103–168 (1967)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arbieto, A., Matheus, C.: A pasting lemma and some applications for conservative systems. Ergod. Th. Dynam. Sys. 27(5), 1399–1417 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Araújo, V., Bessa, M.: Dominated splitting and zero volume for incompressible three flows. Nonlinearity 21(7), 1637–1653 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Auslander, J., Yorke, J.: Interval maps, factors of maps, and chaos. Tôhoku Math J. 32(2), 177–188 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Avila, A., Bochi, J.: Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms. Trans. Am. Math. Soc. 364(6), 2883–2907 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Banks, J., Brooks, J., Cairns, G., Davis, G., Stacy, P.: On Devaney’s definition of chaos. Amer. Math. Montly 99, 332–334 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bessa, M.: The Lyapunov exponents of generic zero divergence three-dimensional vector fields. Ergod. Th. Dynam. Sys. 27, 1445–1472 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bessa, M., Duarte, P.: Abundance of elliptic dynamics on conservative 3-flows. Dyn. Syst. Int. J. 23(4), 409–424 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bessa, M.: Generic incompressible flows are topological mixing. C. R. Math. Acad. Sci. Paris 346, 1169–1174 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bessa, M., Rocha, J.: Three-dimensional conservative star flows are Anosov. Disc. Cont. Dyn. Sys. A 26(3), 839–846 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bessa M., Rocha, J.: Contributions to the geometric and ergodic theory of conservative flows. Ergod. Th. Dynam. Sys. doi: 10.1017/etds.2012.110
  16. 16.
    Bessa, M., Varandas, P.: On the entropy of conservative flows. Qual. Theory Dyn. Syst. 10(1), 11–22 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bonatti, C., Crovisier, S.: Récurrence et généricité. Invent. Math. 158(1), 33–104 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bonatti, C., Díaz, L.J., Pujals, E.R.: A \(C^1\)-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158, 355–418 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Brin, M., Burago, D., Ivanov, S.: Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. J. Mod. Dyn. 3(4), 1–11 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Burago, D., Ivanov, S.: Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups. J. Mod. Dyn. 2(4), 541–580 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, J., Hu, H., Pesin, Y.: A volume preserving flows with essential coexistence of zero and nonzero Lyapunov exponents, Ergod. Theory Dyn. Syst. doi: 10.1017/etds.2012.109
  22. 22.
    Cornfield, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Springer, Berlin, Heidelberg, New York (1982)CrossRefGoogle Scholar
  23. 23.
    Devaney, R.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Menlo Park (1989)zbMATHGoogle Scholar
  24. 24.
    Fountain, G.O., Khakhar, D.V., Mezic’, I., Ottino, J.M.: Chaotic mixing in a bounded three-dimensional flow. J. Fluid Mech. 417, 265–301 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Franks, J., Williams, R.: Anomalous Anosov Flows, Global Theory and Dynamical Systems, SLN 819. Springer, Berlin (1980)Google Scholar
  26. 26.
    Hu, H., Pesin, Y., Talitskaya, A.: Every Compact Manifold Carries a Hyperbolic Bernoulli Flow, Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge (2004)Google Scholar
  27. 27.
    Rodriguez-Hertz, M.A.: Genericity of nonuniform hyperbolicity in dimension 3. J. Modern Dyn. 6(1), 121–138 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Katok, A.: Fifty years of entropy in dynamics: 1958–2007. J. Mod. Dyn. 1(4), 545–596 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Li, T., Yorke, J.: Period three implies chaos. Am. Math. Montly 82, 985–992 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ma, T., Wang, S.: Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics: Mathematical Surveys and Monographs, vol. 119. American Mathematical Society, Providence (2005)CrossRefGoogle Scholar
  31. 31.
    Milnor, J.: A note on curvature and fundamental group. J. Differ. Geometry 2, 1–7 (1968)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Oseledets, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)zbMATHGoogle Scholar
  33. 33.
    Parwani, K.: On \(3\)-manifolds that support partially hyperbolic diffeomorphisms. Nonlinearity 23(3), 589–606 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Plante, J.F., Thurston, W.P.: Anosov flows and the fundamental group. Topology 11, 147–150 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Pugh, C., Robinson, C.: The \(C^1\) closing lemma, including Hamiltonians. Ergod. Th.& Dynam. Sys. 3, 261–313 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sun, W., Tian, X.: Dominated splitting and Pesin’s entropy formula. Discret. Cont. Dyn. Syst. A 32(4), 1421–1434 (2012)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Ulcigrai, C.: Absence of mixing in area-preserving flows on surfaces. Ann. Math. 173(3), 1743–1778 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Vivier, T.: Projective hyperbolicity and fixed points. Ergod. Theory Dyn. Syst. 26, 923–936 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Universidade da Beira InteriorCovilhãPortugal

Personalised recommendations