Skip to main content

Analytic Varieties as Limit Periodic Sets


Let \({f(x, y) \not\equiv 0}\) be a real-analytic planar function. We show that, for almost every R > 0 there exists an analytic 1-parameter family of vector fields X λ which has \({\{f(x, y)=0\} \cap \overline{B_R((0, 0))}}\) as a limit periodic set. Furthermore, we show that if f(x, y) is polynomial, then there exists a polynomial family with these properties.

This is a preview of subscription content, access via your institution.


  1. 1

    Benedetti R., Riesler J.-L.: Real Algebraic Geometry and Semi-Algebraic Sets. Hermann, Paris (1990)

    Google Scholar 

  2. 2

    Écalle, J.: Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac (French) (Introduction to Analyzable Functions and Constructive Proof of the Dulac Conjecture) Actualités Mathématiques (Current Mathematical Topics). Hermann, Paris (1992)

  3. 3

    Françoise J.-P., Pugh C.C.: Keeping track of limit cycles. J. Differ. Equ. 65(2), 139–157 (1986)

    MATH  Article  Google Scholar 

  4. 4

    Gross J., Yellen J.: Graph Theory and Its Applications. CRC Press, Boca Raton (1998)

    Google Scholar 

  5. 5

    Il’yashenko, Yu.S.: Finiteness Theorems for Limit Cycles. Translated from the Russian by H. H. McFaden. Translations of Mathematical Monographs, vol. 94. American Mathematical Society, Providence (1991)

  6. 5

    Panazzolo D., Roussarie R.: A Poincaré-Bendixson theorem for analytic families of vector fields. Bol. Soc. Brasil. Mat. (N.S.) 26(1), 85–116 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7

    Roussarie R.: Bifurcations of Planar Vector Fields and Hilbert’s Sixteenth Problem. Birkhauser, Basel (1995) (English)

    Google Scholar 

  8. 8

    Wall C.T.C.: Singular Points of Plane Curves, pp. xi+370. Cambridge University Press, Cambridge (2004)

    MATH  Book  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to André Belotto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belotto, A. Analytic Varieties as Limit Periodic Sets. Qual. Theory Dyn. Syst. 11, 449–465 (2012).

Download citation


  • Periodic Orbit
  • Implicit Function Theorem
  • Analytic Family
  • Connected Part
  • Planar Vector