Qualitative Theory of Dynamical Systems

, Volume 8, Issue 2, pp 349–356 | Cite as

Finiteness of Kite Relative Equilibria in the Five-Vortex and Five-Body Problems

Article

Abstract

We study the finiteness of planar relative equilibria of the Newtonian five-body problem and in the five-vortex problem in the case that configurations form a symmetric kite (three points on a line and two additional points placed symmetrically with respect to that line). We can prove that the equivalence classes of such relative equilibria are finite with some possible exceptional cases. These exceptional cases are given explicitly as polynomials in the masses (or vorticities in the vortex problem). These results depend on computations performed with the software Sage, Singular, Magma, and Gfan.

Keywords

Celestial mechanics n-Body problem Relative equilibria Vortices Tropical geometry 

Mathematics Subject Classification (2000)

70F10 70F15 37N05 76B47 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albouy A., Chenciner A.: Le problème des n corps et les distances mutuelles. Inv. Math. 131, 151–184 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernstein D.N.: The number of roots of a system of equations. Fun. Anal. Appl. 9, 183–185 (1975)MATHCrossRefGoogle Scholar
  3. 3.
    Celli, M.: Sur les mouvements homographiques de N corps associés à des masses de signe quelconque, le cas particulier où la somme des masses est nulle, et une application à la recherche de choréographies perverse. Thèse, Université Paris 7 (2005)Google Scholar
  4. 4.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. Part I: the user language. J. Symb. Comput. 24, 235–265 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0—a computer algebra system for polynomial computations. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automated Reasoning, pp. 227–233. The Calculemus-2000 Symposium (2001)Google Scholar
  6. 6.
    Hampton M., Moeckel R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hampton, M., Moeckel, R.: Finiteness of stationary configurations of the four-vortex problem. Trans. Am. Math. Soc. (in press)Google Scholar
  8. 8.
    Jensen, A.N.: Algorithmic aspects of Gröbner fans and tropical varieties. Ph.D. thesis, Department of Mathematical Sciences, University of Aarhus, Denmark (2007)Google Scholar
  9. 9.
    Jensen, A.N.: Gfan, a software system for Gröbner fans. http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html
  10. 10.
    Kotsireas I., Lazard D.: Central configurations of the 5-body problem with equal masses in three-space. J. Math. Sci. 108, 1119–1138 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Roberts G.: A continuum of relative equilibria in the five-body problem. Physica D 127(3–4), 141–145 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Smale S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Stein, W.: Sage: Open Source Mathematical Software (Version 3.0.2). The Sage Group. http://www.sagemath.org. (2008)
  14. 14.
    Sturmfels B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)MATHGoogle Scholar
  15. 15.
    Verschelde J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25, 251–276 (1999)MATHCrossRefGoogle Scholar
  16. 16.
    Williams W.L.: Permanent configurations in the problem of five bodies. Trans. Am. Math. Soc. 44, 562–579 (1938)CrossRefGoogle Scholar
  17. 17.
    Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)Google Scholar
  18. 18.
    Ziegler G.: Lectures on Polytopes. Springer-Verlag, New York (1995)MATHGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of MinnesotaDuluthUSA

Personalised recommendations