Skip to main content

Advertisement

Log in

Genomic analysis of an aggressive case with metastatic intrahepatic mucinous cholangiocarcinoma

  • Case Report
  • Published:
Clinical Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Intrahepatic mucinous cholangiocarcinoma (IHMC) is rare and behaves notoriously; however, the details of the clinicopathological characteristics of IHMC remain unknown. A 70-year-old man was admitted for examination of the hepatic mass in the S1 segment. He underwent extended left hepatic lobectomy. Histopathological evaluation demonstrated mixed papillary carcinoma that comprised well to moderately differentiated tubular adenocarcinoma and signet-ring cell carcinoma with large amounts of mucus lakes. Tumor was relapsed 9 months after surgery. Although he received chemotherapy with the combination of gemcitabine and cisplatin, he had renal failure and discontinued the chemotherapy. He received palliative radiotherapy for metastasis in the cervical spine. Then, the patient treated with S-1, however, he died 16 months after the initial diagnosis. The autopsy findings showed multiple nodules in the lungs, pleura, kidneys, adrenal glands, stomach, pancreas, and lymph nodes. Histological examination revealed that all nodules were IHMC. Next-generation sequencing revealed that somatic mutations in ADGRB3, TAF1L and EPHA3 may affect carcinogenesis, and those in TAF1, EPHA3, PIK3C2B, FN1, ERBB3, BRIP1, SYNE1 and TGFBR2 may affect metastasis. Molecular carcinogenesis of IHMC may be distinct from that of ordinary cholangiocarcinoma. Further studies are needed to elucidate the genetic mutations and their functions in IHMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IHMC:

Intrahepatic mucinous cholangiocarcinoma

MC:

Mucinous carcinoma

CECT:

Contrast-enhanced computed tomography

MRI:

Magnetic resonance imaging

T2WI:

T2-weighted image

DWI:

Diffusion-weighted image

ADC:

Apparent diffusion coefficient

UICC:

The Union for International Cancer Control

GEM:

Gemcitabine

CDDP:

Cisplatin

NGS:

Next-generation sequencing

FFPE:

Formalin-fixed, paraffin-embedded

CNVs:

Copy number variations

WHO:

World Health Organization

HCC:

Hepatocellular carcinoma

IHCC:

Intrahepatic cholangiocarcinoma

References

  1. Laohawetwanit T, Klaikaew N. Pathological aspects of mucinous cholangiocarcinoma: a single-center experience and systematic review. Pathol Int. 2020;70:661–70.

    PubMed  Google Scholar 

  2. Adsay NV, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25:26–42.

    Article  CAS  PubMed  Google Scholar 

  3. Fujimoto A, Furuta M, Shiraishi Y, et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun. 2015;6:6120.

    Article  CAS  PubMed  Google Scholar 

  4. Zou S, Li J, Zhou H, et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun. 2014;5:5696.

    Article  CAS  PubMed  Google Scholar 

  5. Fujimoto A, Furuta M, Totoki Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48:500–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–10.

    Article  CAS  PubMed  Google Scholar 

  7. Nakagaki T, Tamura M, Kobashi K, et al. Profiling cancer-related gene mutations in oral squamous cell carcinoma from Japanese patients by targeted amplicon sequencing. Oncotarget. 2017;8:59113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wada K, Kondo F, Kubosawa H, et al. Combined hepatocellular and mucinous carcinoma. Acta Pathol Jpn. 1986;36:285–91.

    CAS  PubMed  Google Scholar 

  9. Bu-Ghanim M, Suriawinata A, Killackey M, et al. Invasive colloid carcinoma arising from intraductal papillary neoplasm in a 50-year-old woman with primary sclerosing cholangitis. Semin Liver Dis. 2004;24:209–13.

    Article  PubMed  Google Scholar 

  10. Chow LT, Ahuja AT, Kwong KH, et al. Mucinous cholangiocarcinoma: an unusual complication of hepatolithiasis and recurrent pyogenic cholangitis. Histopathology. 1997;30:491–4.

    Article  CAS  PubMed  Google Scholar 

  11. Kai K, Ide Y, Miyoshi A, et al. A case of mucinous cholangiocarcinoma showing features of hepatocellular carcinoma. Pathol Int. 2013;63:419–21.

    Article  PubMed  Google Scholar 

  12. Kang GH, Moon HS, Lee ES, et al. A case of colloid carcinoma arising in association with intraductal papillary neoplasm of the liver. Korean J Gastroenterol = Taehan Sohwagi Hakhoe chi. 2012;60:386–90.

    Article  PubMed  Google Scholar 

  13. Mizukami Y, Ohta H, Arisato S, et al. Case report: mucinous cholangiocarcinoma featuring a multicystic appearance and periportal collar in imaging. J Gastroenterol Hepatol. 1999;14:1223–6.

    Article  CAS  PubMed  Google Scholar 

  14. Morita D, Kagata Y, Ogata S, et al. Combined hepatocellular carcinoma and cholangiocarcinoma with components of mucinous carcinoma arising in a cirrhotic liver. Pathol Int. 2006;56:222–6.

    Article  PubMed  Google Scholar 

  15. Motoo Y, Sawabu N, Minamoto T, et al. Rapidly growing mucinous cholangiocarcinoma. Intern Med (Tokyo, Japan). 1993;32:116–21.

    Article  CAS  Google Scholar 

  16. Oshiro T, Esaki M. A case of intrahepatic cholangiocarcinoma with marked mucus production. Jpn J Clin Oncol. 2011;41:1388.

    Article  PubMed  Google Scholar 

  17. Sasaki M, Nakanuma Y, Shimizu K, et al. Pathological and immunohistochemical findings in a case of mucinous cholangiocarcinoma. Pathol Int. 1995;45:781–6.

    Article  CAS  PubMed  Google Scholar 

  18. Sonobe H, Enzan H, Ido E, et al. Mucinous cholangiocarcinoma featuring a unique microcystic appearance. Pathol Int. 1995;45:292–6.

    Article  CAS  PubMed  Google Scholar 

  19. Chi Z, Bhalla A, Saeed O, et al. Mucinous intrahepatic cholangiocarcinoma: a distinct variant. Hum Pathol. 2018;78:131–7.

    Article  CAS  PubMed  Google Scholar 

  20. Hagiwara K, Araki K, Yamanaka T, et al. Resected primary mucinous cholangiocarcinoma of the liver. Surg Case Rep. 2018;4:41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sumiyoshi T, Shima Y, Okabayashi T, et al. Mucinous cholangiocarcinoma: clinicopathological features of the rarest type of cholangiocarcinoma. Ann Gastroenterol Surg. 2017;1:114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee DH, Lee JM. Primary malignant tumours in the non-cirrhotic liver. Eur J Radiol. 2017;95:349–61.

    Article  PubMed  Google Scholar 

  23. Kee HJ, Ahn KY, Choi KC, et al. Expression of brain-specific angiogenesis inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia-induced brain angiogenesis and malignant glioma. FEBS Lett. 2004;569:307–16.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Luo J, Liu Z, et al. Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis. 2021. Biosci Rep. https://doi.org/10.1042/bsr20211280.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wassarman DA, Sauer F. TAF(II)250: a transcription toolbox. J Cell Sci. 2001;114:2895–902.

    Article  CAS  PubMed  Google Scholar 

  26. Lee DH, Gershenzon N, Gupta M, et al. Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Mol Cell Biol. 2005;25:9674–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Juven-Gershon T, Kadonaga JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol. 2010;339:225–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tavassoli P, Wafa LA, Cheng H, et al. TAF1 differentially enhances androgen receptor transcriptional activity via its N-terminal kinase and ubiquitin-activating and -conjugating domains. Mol Endocrinol. 2010;24:696–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong S, Yan H, Chen Z, et al. Overexpression of TAF1L promotes cell proliferation, migration and invasion in esophageal squamous cell carcinoma. J Cancer. 2019;10:979–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, et al. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 2002;115:1059–72.

    Article  CAS  PubMed  Google Scholar 

  32. Padthaisong S, Thanee M, Namwat N, et al. A panel of protein kinase high expression is associated with postoperative recurrence in cholangiocarcinoma. BMC Cancer. 2020;20:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.

    Article  CAS  PubMed  Google Scholar 

  34. Shi F, Telesco SE, Liu Y, et al. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A. 2010;107:7692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berger MB, Mendrola JM, Lemmon MA. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett. 2004;569:332–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang K, Sun J, Liu N, et al. Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J Biol Chem. 1996;271:3884–90.

    Article  CAS  PubMed  Google Scholar 

  37. Fedi P, Pierce JH, di Fiore PP, et al. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol. 1994;14:492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.

    Article  PubMed  Google Scholar 

  40. Massagué J. TGFbeta in cancer. Cell. 2008;134:215–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Noë M, Niknafs N, Fischer CG, et al. Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nat Commun. 2020;11:4085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Puckelwartz MJ, Kessler E, Zhang Y, et al. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet. 2009;18:607–20.

    Article  CAS  PubMed  Google Scholar 

  43. Ito Y, Takeda T, Sasaki Y, et al. Expression and clinical significance of the erbB family in intrahepatic cholangiocellular carcinoma. Pathol Res Pract. 2001;197:95–100.

    Article  CAS  PubMed  Google Scholar 

  44. Ruzzenente A, Fassan M, Conci S, et al. Cholangiocarcinoma heterogeneity revealed by multigene mutational profiling: clinical and prognostic relevance in surgically resected patients. Ann Surg Oncol. 2016;23:1699–707.

    Article  PubMed  Google Scholar 

  45. Kim GA, Lee HC, Kim MJ, et al. Incidence of hepatocellular carcinoma after HBsAg seroclearance in chronic hepatitis B patients: a need for surveillance. J Hepatol. 2015;62:1092–9.

    Article  PubMed  Google Scholar 

  46. Castoria G, Migliaccio A, Bilancio A, et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. Embo J. 2001;20:6050–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sadhu C, Masinovsky B, Dick K, et al. Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol. 2003;170:2647–54.

    Article  CAS  PubMed  Google Scholar 

  48. Graupera M, Guillermet-Guibert J, Foukas LC, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature. 2008;453:662–6.

    Article  CAS  PubMed  Google Scholar 

  49. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  CAS  PubMed  Google Scholar 

  50. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999;401:86–90.

    Article  CAS  PubMed  Google Scholar 

  51. Chikh A, Ferro R, Abbott JJ, et al. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget. 2016;7:18325–45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu Z, Li X, Ma J, et al. Integrative analysis of the IQ motif-containing GTPase-activating protein family indicates that the IQGAP3-PIK3C2B axis promotes invasion in colon cancer. Onco Targets Ther. 2020;13:8299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3.

    Article  CAS  PubMed  Google Scholar 

  54. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–99.

    Article  CAS  PubMed  Google Scholar 

  55. Gao W, Liu Y, Qin R, et al. Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line. Biochem Biophys Res Commun. 2016;476:35–41.

    Article  CAS  PubMed  Google Scholar 

  56. Moroz A, Delella FK, Lacorte LM, et al. Fibronectin induces MMP2 expression in human prostate cancer cells. Biochem Biophys Res Commun. 2013;430:1319–21.

    Article  CAS  PubMed  Google Scholar 

  57. He Y, Andersen GR, Nielsen KH. Structural basis for the function of DEAH helicases. EMBO Rep. 2010;11:180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38:1239–41.

    Article  CAS  PubMed  Google Scholar 

  59. Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001;105:149–60.

    Article  CAS  PubMed  Google Scholar 

  60. Alix-Panabières C, Cayrefourcq L, Mazard T, et al. Molecular portrait of metastasis-competent circulating tumor cells in colon cancer reveals the crucial role of genes regulating energy metabolism and DNA repair. Clin Chem. 2017;63:700–13.

    Article  PubMed  CAS  Google Scholar 

  61. Rizeq B, Sif S, Nasrallah GK, et al. Novel role of BRCA1 interacting C-terminal helicase 1 (BRIP1) in breast tumour cell invasion. J Cell Mol Med. 2020;24:11477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chakravarty D, Gao J, Phillips SM, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:1–16.

    Google Scholar 

Download references

Funding

This study was supported in part by JSPS KAKENHI Grant Number 16H06279 (PAGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Masaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human rights

All procedures followed have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from the spouse of the patient for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masaki, Y., Akutsu, N., Adachi, Y. et al. Genomic analysis of an aggressive case with metastatic intrahepatic mucinous cholangiocarcinoma. Clin J Gastroenterol 15, 809–817 (2022). https://doi.org/10.1007/s12328-022-01649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12328-022-01649-x

Keywords

Navigation