Skip to main content
Log in

Recent understanding of cholesterol gallstone pathogenesis: implication to non-surgical therapeutic strategy

  • Clinical Review
  • Published:
Clinical Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

This article reviews the recent understanding of cholesterol gallstone pathogenesis in light of etiology and molecular mechanisms of the cholesterol gallstone formation process, to provide the future direction of a non-surgical therapeutic strategy. In principle, cholesterol gallstone formation, which is associated with an altered bile salt metabolism, is based primarily upon the impairment of cholesterol metabolism and homeostasis. Cholesterol is eliminated physiologically into bile; thus, the excess cholesterol induces bile metastability due to a relative insufficiency of bile salt, to initiate cholesterol crystal nucleation in the gallbladder with an impaired function. Those crystals grow to become macroscopic stones in the gallbladder mucin gel, accumulated under an arachidonate-prostanoid pathway induced-hypersecretion by the gallbladder wall. These events can be modified by bile salt supplementation, which provides a detergent action. Therefore, oral bile salt administration is a cost-effective, non-surgical therapy under certain circumstances. Understanding the pathogenesis of cholesterol gallstones attributes to the therapeutic guideline based upon scientific and clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP binding cassette family of transporters

FXR:

Farnesoid X receptor

LXR:

Liver X receptor

PFIC:

Progressive familial intrahepatic cholestasis

PXR:

Pregnane X receptor

RXR:

Retinoid X receptor

References

  1. Carey MC. Pathogenesis of gallstones. Am J Surg. 1993;165:410–9.

    Article  CAS  PubMed  Google Scholar 

  2. Shaffer EA. Epidemiology of gallbladder stone disease. In: Tytgat GNJ, editor. Best practice and research clinical gastroenterology. Amsterdam: Elsevier; 2006. p. 981–96.

    Google Scholar 

  3. Hofmann AF, Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res. 1984;25:1477–89.

    CAS  PubMed  Google Scholar 

  4. Chiang JY. Regulation of bile acid synthesis. Front Biosci. 1998;3:176–93.

    Article  Google Scholar 

  5. Vlahcevic ZR, Pandak WM, Stravitz RT. Regulation of bile acid biosynthesis. Gastroenterol Clin North Am. 1999;28:1–25.

    Article  CAS  PubMed  Google Scholar 

  6. Hylemon PB. Metabolism of bile acids in intestinal microflora. In: Danielsson H, Sjövall J, editors. Sterols and bile acids. Amsterdam: Elsevier; 1985. p. 331–43.

    Chapter  Google Scholar 

  7. Wells JE, Hylemon PB. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl Environ Microbiol. 2000;66:1107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 1995;270:27228–34.

    Article  CAS  PubMed  Google Scholar 

  9. Gerloff T, Stieger B, Hagenbuch B, et al. The sister-P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998;273:10046–50.

    Article  CAS  PubMed  Google Scholar 

  10. Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233–8.

    Article  CAS  PubMed  Google Scholar 

  11. Jansen PL, Strautnieks SS, Jacquemin E, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology. 1999;117:1370–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kipp H, Pichetshote N, Arias IM. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem. 2001;276:7218–24.

    Article  CAS  PubMed  Google Scholar 

  13. Asamoto Y, Tazuma S, Ochi H, et al. Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function. Biochem J. 2001;359:605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.

    Article  CAS  PubMed  Google Scholar 

  15. Chawla A, Saez E, Evans RM. Don’t know much bile-ology. Cell. 2000;103:1–4.

    Article  CAS  PubMed  Google Scholar 

  16. Lu TT, Makishima M, Repa JJ, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 2000;6:507–15.

    Article  CAS  PubMed  Google Scholar 

  17. Elferink RP, Groen AK. The mechanism of biliary lipid secretion and its defects. Gastroenterol Clin North Am. 1999;28:59–74.

    Article  CAS  PubMed  Google Scholar 

  18. de Vree JM, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA. 1998;95:282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu JE, Basso F, Shamburek RD, et al. Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice. J Biol Chem. 2004;279:22913–25.

    Article  CAS  PubMed  Google Scholar 

  20. Shaffer EA, Small DM. Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity. J Clin Invest. 1977;59:828–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reuben A, Maton PN, Murphy GM, et al. Bile lipid secretion in obese and non-obese individuals with and without gallstones. Clin Sci. 1985;69:71–9.

    Article  CAS  PubMed  Google Scholar 

  22. Diehl AK. Epidemiology and natural history of gallstone disease. In: Cooper AD, editor. Gastroenterology clinics of North America. Philadelphia: WB Saunders; 1991. p. 1–19.

    Google Scholar 

  23. Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  CAS  PubMed  Google Scholar 

  24. Ginanni Corradini S, Ripani C, Della Guardia P, et al. The human gallbladder increases cholesterol solubility in bile by differential lipid absorption: a study using a new in vitro model of isolated intra-arterially perfused gallbladder. Hepatology. 1998;28:314–22.

    Article  CAS  PubMed  Google Scholar 

  25. Corradini SG, Elisei W, Giovannelli L, et al. Impaired human gallbladder lipid absorption in cholesterol gallstone disease and its effect on cholesterol solubility in bile. Gastroenterology. 2000;118:912–20.

    Article  CAS  PubMed  Google Scholar 

  26. Pellegrini CA, Ryan T, Broderick W, et al. Gallbladder filling and emptying during cholesterol gallstone formation in the prairie dog. A cholescintigraphic study. Gastroenterology. 1986;90:143–9.

    Article  CAS  PubMed  Google Scholar 

  27. Jazrawi RP, Pazzi P, Petroni ML, et al. Postprandial gallbladder motor function: refilling and turnover of bile in health and in cholelithiasis. Gastroenterology. 1995;109:582–91.

    Article  CAS  PubMed  Google Scholar 

  28. Chen Q, Amaral J, Biancani P, et al. Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology. 1999;116:678–85.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Q, Amaral J, Oh S, et al. Gallbladder relaxation in patients with pigment and cholesterol stones. Gastroenterology. 1997;113:930–7.

    Article  CAS  PubMed  Google Scholar 

  30. Marcus SN, Heaton KW. Deoxycholic acid and the pathogenesis of gall stones. Gut. 1988;29:522–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Einarsson C, Hillebrant CG, Axelson M. Effects of treatment with deoxycholic acid and chenodeoxycholic acid on the hepatic synthesis of cholesterol and bile acids in healthy subjects. Hepatology. 2001;33:1189–93.

    Article  CAS  PubMed  Google Scholar 

  32. Dowling RH. Review: pathogenesis of gallstones. Aliment Pharmacol Ther. 2000;14(suppl 2):39–47.

    Article  PubMed  Google Scholar 

  33. Thomas LA, Veysey MJ, Bathgate T, et al. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology. 2000;119:806–15.

    Article  CAS  PubMed  Google Scholar 

  34. Carey MC. Formation and growth of cholesterol gallstones: the new synthesis. In: Fromm H, Leuschner U, editors. Bile acids—cholestasis—gallstones. Dordrecht: Kluwer; 1996. p. 147–75.

    Google Scholar 

  35. Konikoff FM, Danino D, Weihs D, et al. Microstructural evolution of lipid aggregates in nucleating model and human biles visualized by cryogenic transmission electron microscopy. Hepatology. 2000;31:261–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ochi H, Tazuma S, Kajiyama G. Lecithin hydrophobicity modulates the process of cholesterol crystal nucleation and growth in supersaturated model bile systems. Biochem J. 1996;318:139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishioka T, Tazuma S, Yamashita G, et al. Quantitative assessment on comparative potencies of cholesterol crystal promoting factors: relation to mechanistic characterization. Biochem J. 1998;332:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miquel JF, Van Der Putten J, Pimentel F, et al. Increased activity in the biliary Con A-binding fraction accounts for the difference in crystallization behavior in bile from Chilean gallstone patients compared with Dutch gallstone patients. Hepatology. 2001;33:328–32.

    Article  CAS  PubMed  Google Scholar 

  39. Jirsa M, Muchova L, Draberova L, et al. Carcinoembryonic antigen-related cell adhesion molecule 1 is the 85-kilodalton pronase-resistant biliary glycoprotein in the cholesterol crystallization promoting low density protein–lipid complex. Hepatology. 2001;34:1075–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Health and Labour Sciences Research Grant for Intrahepatic Gallstones awarded to S. Tazuma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Tazuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tazuma, S. Recent understanding of cholesterol gallstone pathogenesis: implication to non-surgical therapeutic strategy. Clin J Gastroenterol 1, 87–92 (2008). https://doi.org/10.1007/s12328-008-0031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12328-008-0031-2

Keywords

Navigation