Skip to main content
Log in

Study Protocol of a Randomized Controlled Clinical Trial to Evaluate the Efficacy and Safety of Ropeginterferon Alfa-2b in COVID-19 Patients with Comorbidities

  • Study Protocol
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

Ropeginterferon alfa-2b represents a new-generation PEGylated interferon. It is approved for the treatment of polycythemia vera and shows promising anti-SARS-CoV-2 activities.

Objective

This clinical study aims to evaluate the efficacy and safety of ropeginterferon alfa-2b in patients with coronavirus disease 2019 (COVID-19) and comorbidities.

Methods

The randomized controlled study is designed to enroll adult patients with COVID-19 infection and comorbidities. Patients are non-responders to anti-SARS-CoV-2 drugs or not suitable to receive them. Comorbidities include hematologic cancer, solid tumor, and well-controlled autoimmune disease. Non-responders to anti-SARS-CoV-2 drugs are defined as having received treatment but have a Ct value < 30 at 14 days after symptom onset. Patients are randomized in a 1:1 ratio to receive ropeginterferon alfa-2b at 250 μg plus standard of care (SOC) or SOC alone. SARS-CoV-2 antigen test will be conducted at day 15 and day 29 visits to determine whether to administer additional ropeginterferon alfa-2b doses. Patients who are positive on the antigen test on days 15 and 29 will receive the second and third doses of ropeginterferon alfa-2b at 350 μg and 500 μg, respectively. Patients with a negative antigen test but a Ct value < 30 by reverse transcription polymerase chain reaction (RT-PCR) at days 15 and 29 are also administered the second (350 μg) and third (500 μg) doses. Patients at high risk of COVID-19 rebound/relapse, e.g., immunocompromised patients, will be given additional ropeginterferon alfa-2b doses even if the Ct is ≥ 30. Approximately 60 patients will be enrolled.

Planned Outcomes

The primary outcome is to compare the time from randomization to the achievement of Ct value ≥ 30 by RT-PCR between ropeginterferon alfa-2b and control groups. Our previous studies have shown safety and promising anti-SARS-CoV-2 activities in patients with moderate or severe COVID-19. This study will provide valuable data in patients with COVID-19 and comorbidities, for whom safe and effective treatment is urgently needed.

Trial Registration Number

This trial is registered at ClinicalTrials.gov (Identifier NCT05808322).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be available to external researchers upon reasonable request from the investigator and PharmaEssentia.

References

  1. Fouchier RA, Kuiken T, Schutten M, et al. Koch’s postulates fulfilled for SARS virus. Nature. 2003;423(6937):240.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2(8):1804–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.

    Article  CAS  PubMed  Google Scholar 

  4. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.

    Article  CAS  PubMed  Google Scholar 

  5. Araf Y, Akter F, Tang YD, et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol. 2022;94(5):1825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. National Institutes of Health. COVID-19 treatment guidelines. Last updated March 6, 2023. https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/.

  7. Hogan JI, Duerr R, Dimartino D, et al. Remdesivir resistance in transplant recipients with persistent COVID-19. Res Sq. 2022;rs.3.rs-1800050.

  8. Carlin AF, Clark AE, Chaillon A, et al. Virologic and immunologic characterization of coronavirus disease 2019 recrudescence after nirmatrelvir/ritonavir treatment. Clin Infect Dis. 2023;76(3):e530–2.

    Article  CAS  PubMed  Google Scholar 

  9. Tian L, Pang Z, Li M, et al. Molnupiravir and its antiviral activity against COVID-19. Front Immunol. 2022;13:855496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022;602(7898):657–63.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Akiyama S, Hamdeh S, Micic D, Sakuraba A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis. Ann Rheum Dis. 2021;80(3):384–91.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Chai P, Yu J, Fan X. Effects of cancer on patients with COVID-19: a systematic review and meta-analysis of 63,019 participants. Cancer Biol Med. 2021;18(1):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jang YS, Seon JY, Yoon SJ, Park SY, Lee SH, Oh IH. Comorbidities and factors determining medical expenses and length of stay for admitted COVID-19 patients in Korea. Risk Manag Healthc Policy. 2021;14:2021–33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koyyada R, Nagalla B, Tummala A, et al. Prevalence and impact of preexisting comorbidities on overall clinical outcomes of hospitalized COVID-19 patients. Biomed Res Int. 2022;2022:2349890.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aboueshia M, Hussein MH, Attia AS, et al. Cancer and COVID-19: analysis of patient outcomes. Future Oncol. 2021;17(26):3499–510.

    Article  CAS  PubMed  Google Scholar 

  16. Salunke AA, Nandy K, Pathak SK, et al. Impact of COVID-19 in cancer patients on severity of disease and fatal outcomes: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14(5):1431–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Venkatesulu BP, Chandrasekar VT, Girdhar P, et al. A systematic review and meta-analysis of cancer patients affected by a novel coronavirus. JNCI Cancer Spectr. 2021;5(2):pkaa102.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anaya JM, Monsalve DM, Rojas M, et al. Latent rheumatic, thyroid and phospholipid autoimmunity in hospitalized patients with COVID-19. J Transl Autoimmun. 2021;4:100091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laracy JC, Kamboj M, Vardhana SA. Long and persistent COVID-19 in patients with hematologic malignancies: from bench to bedside. Curr Opin Infect Dis. 2022;35(4):271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee CY, Shah MK, Hoyos D, et al. Prolonged SARS-CoV-2 infection in patients with lymphoid malignancies. Cancer Discov. 2022;12(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  21. Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and immunodeficiency in severe SARS-CoV-2 infection and prolonged COVID-19. Curr Issues Mol Biol. 2022;45(1):33–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moran E, Cook T, Goodman AL, et al. Persistent SARS-CoV-2 infection: the urgent need for access to treatment and trials. Lancet Infect Dis. 2021;21(10):1345–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Helleberg M, Niemann CU, Moestrup K, et al. Persistent COVID-19 in an immunocompromised patient temporarily responsive to two courses of remdesivir therapy. J Infect Dis. 2020;222(7):jiaa446.

    Article  PubMed  Google Scholar 

  24. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8(7):559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qin A. An anti-cancer surveillance by the interplay between interferon-beta and retinoblastoma protein RB1. Front Oncol. 2023;13:1173467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Contoli M, Papi A, Tomassetti L, et al. Blood interferon-α levels and severity, outcomes, and inflammatory profiles in hospitalized COVID-19 patients. Front Immunol. 2021;12:648004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ströher U, DiCaro A, Li Y, et al. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha. J Infect Dis. 2004;189(7):1164–7.

    Article  PubMed  Google Scholar 

  32. Meng Z, Wang T, Chen L, et al. The effect of recombinant human interferon alpha nasal drops to prevent COVID-19 pneumonia for medical staff in an epidemic area. Curr Top Med Chem. 2021;21(10):920–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Q, Chen V, Shannon CP, et al. Interferon-a2b treatment for COVID-19. Front Immunol. 2020;11:1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhushan BLS, Wanve S, Koradia P, et al. Efficacy and safety of pegylated interferon-α2b in moderate COVID-19: a phase 3, randomized, comparator-controlled, open-label study. Int J Infect Dis. 2021;111:281–7.

    Article  Google Scholar 

  35. Pandit A, Bhalani N, Bhushan BLS, et al. Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: a phase II, randomized, controlled, open-label study. Int J Infect Dis. 2021;105:516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen KY, Lee KY, Qin A, et al. Clinical experience with ropeginterferon alfa-2b in the off-label use for the treatment of COVID-19 patients in Taiwan. Adv Ther. 2022;39(2):910–22.

    Article  CAS  PubMed  Google Scholar 

  37. Feng PH, Liu WD, Cheng CY, et al. Ropeginterferon alfa-2b therapy for moderate to severe COVID-19: a phase 3, randomized controlled clinical trial. J Microbiol Immunol Infect. 2023 (under review).

  38. US Food and Drug Administration. FDA approves treatment for rare blood disease: treatment is first FDA-approved option patients can take regardless of previous therapies. Nov 12, 2021. https://www.fda.gov/news-events/press-announcements/fda-approves-treatment-rare-blood-disease#:~:text=Rare%20Blood%20Disease-,FDA%20NEWS%20RELEASE,-FDA%20Approves%20Treatment. Accessed Jul 18, 2023.

  39. European Medicines Agency. Besremi: EPAR-medicine overview. 2019. https://www.ema.europa.eu/en/medicines/human/EPAR/besremi. Accessed Jul 18, 2023.

  40. Jin J, Qin A, Zhang L, et al. A phase II trial to assess the efficacy and safety of ropeginterferon α-2b in Chinese patients with polycythemia vera. Future Oncol. 2023;19(11):753–61.

    Article  CAS  PubMed  Google Scholar 

  41. Jin J, Zhang L, Qin A, et al. A new dosing regimen of ropeginterferon alfa-2b is highly effective and tolerable: findings from a phase 2 study in Chinese patients with polycythemia vera. Exp Hematol Oncol. 2023;12(1):55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang CE, Wu YY, Hsu CC, et al. Real-world experience with ropeginterferon-alpha 2b (Besremi) in Philadelphia-negative myeloproliferative neoplasms. J Formos Med Assoc. 2021;120(2):863–73.

    Article  CAS  PubMed  Google Scholar 

  43. Verstovsek S, Komatsu N, Gill H, et al. SURPASS-ET: phase III study of ropeginterferon alfa-2b versus anagrelide as second-line therapy in essential thrombocythemia. Future Oncol. 2022;18(27):2999–3009.

    Article  CAS  PubMed  Google Scholar 

  44. Qin A, Urbansky RW, Yu L, Ahmed T, Mascrenhas J. An alternative dosing strategy for ropeginterferon alfa-2b may help improve outcomes in myeloproliferative neoplasms: an overview of previous and ongoing studies with perspectives on the future. Front Oncol. 2023;13:1109866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang YW, Hsu CW, Lu SN, et al. Ropeginterferon alfa-2b every 2 weeks as a novel pegylated interferon for patients with chronic hepatitis B. Hepatol Int. 2020;14(6):997–1008.

    Article  PubMed  Google Scholar 

  46. Lin HH, Hsu SJ, Lu SN, et al. Ropeginterferon alfa-2b in patients with genotype 1 chronic hepatitis C: pharmacokinetics, safety, and preliminary efficacy. JGH Open. 2021;5(8):929–40.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hsu SJ, Yu ML, Su CW, et al. Ropeginterferon alfa-2b administered every two weeks for patients with genotype 2 chronic hepatitis C. J Formos Med Assoc. 2021;120(3):956–64.

    Article  CAS  PubMed  Google Scholar 

  48. Chen CY, Chuang WL, Qin A, et al. A phase 3 clinical trial validating the potency and safety of an innovative, extra-long-acting interferon in chronic hepatitis C. JGH Open. 2022;6(11):782–91.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang YW, Qin A, Tsai CY, Chen PJ. Novel pegylated interferon for the treatment of chronic viral hepatitis. Viruses. 2022;14(6):1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank study coordinators and nurses, and all other investigators and study participants in the study. We are grateful to the patients and their families.

Medical Writing/Editorial Assistance

The authors completed the writing and edition of the manuscript without any medical writing/editorial assistance.

Funding

This study, the journal’s Rapid Service Fee, and the Open Access Fee are sponsored by PharmaEssentia Corporation.

Author information

Authors and Affiliations

Authors

Contributions

All authors (W-DL, H-AH, K-JL, AQ, C-YT, and W-HS) contributed to the study conception and design. The first draft of the manuscript was written by W-HS, AQ and C-YT. All authors commented on previous versions of the manuscript and have read and approved the final manuscript.

Corresponding author

Correspondence to Wang-Huei Sheng.

Ethics declarations

Conflict of Interest

Wang-Huei Sheng, Wang-Da Liu, and Ko-Jen Li declare no conflict of interest. Hsin-An Hou declares the honorarium, travel and research support from PharmaEssentia Corporation. Albert Qin and Chan-Yen Tsai work for PharmaEssentia Corporation.

Ethical Approval

The study is approved by the institutional review board of NTUH IRB (approval number 202302136MIPD) and follows the principles of the Declaration of Helsinki for all human experimental investigations. Informed consent will be obtained from all participating patients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WD., Hou, HA., Li, KJ. et al. Study Protocol of a Randomized Controlled Clinical Trial to Evaluate the Efficacy and Safety of Ropeginterferon Alfa-2b in COVID-19 Patients with Comorbidities. Adv Ther 41, 847–856 (2024). https://doi.org/10.1007/s12325-023-02715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-023-02715-7

Keywords

Navigation