Skip to main content

Future Directions in Research in Transcriptomics in the Healing of Diabetic Foot Ulcers

Abstract

Diabetic foot ulcers are a health crisis that affect millions of individuals worldwide. Current standard of care involves diligent wound care with adjunctive antibiotics and surgical debridement. However, despite this, the majority will still become infected and fail to heal. Recent efforts using bioengineered skin initially appeared promising, but randomized clinical trials have disappointed. Scientists have now begun to understand that the normal wound healing physiology does not apply to diabetic foot ulcers as they maintain a chronic state of inflammation and fail to progress in a linear pathway. Using transcriptomics, research over the past decade has started identifying master genes and protein pathways that are dysregulated in patients with diabetes. This review paper discusses those genes involved and how novel advancements are using this information to create new biologically based compounds to accelerate wound healing in patients with diabetic foot ulcers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Hicks CW, Selvarajah S, Mathioudakis N, et al. Burden of infected diabetic foot ulcers on hospital admissions and costs. Ann Vasc Surg. 2016;33:149–58.

    Article  Google Scholar 

  2. Driver VR, Lavery LA, Reyzelman AM, et al. A clinical trial of integra template for diabetic foot ulcer treatment. Wound Repair Regen. 2015;23(6):891–900. https://doi.org/10.1111/wrr.12357.

    Article  Google Scholar 

  3. Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37–53. https://doi.org/10.4239/wjd.v6.i1.37.

    Article  Google Scholar 

  4. Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018;1411(1):153–65. https://doi.org/10.1111/nyas.13569.

    Article  Google Scholar 

  5. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.

    Article  Google Scholar 

  6. Wallace HA, Basehore BM, Zito PM. Wound healing phases. [Updated 2021 Jul 27]. 2020 StatPearls [Internet]. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK470443/.

  7. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  CAS  Google Scholar 

  8. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–85. https://doi.org/10.1007/s00018-016-2268-0.

    Article  CAS  Google Scholar 

  9. Witte MB, Barbul A. Role of nitric oxide in wound repair. Am J Surg. 2002;183(4):406–12.

    Article  CAS  Google Scholar 

  10. Koike Y, Yozaki M, Utani A, et al. Fibroblast growth factor 2 accelerates the epithelial–mesenchymal transition in keratinocytes during wound healing process. Sci Rep. 2020;10:18545. https://doi.org/10.1038/s41598-020-75584-7.

    Article  CAS  Google Scholar 

  11. Schilling JA. Wound healing. Surg Clin N Am. 1976;56(4):859–74. https://doi.org/10.1016/s0039-6109(16)40983-7.

    Article  CAS  Google Scholar 

  12. Xue C, Friedman A, Sen CK. A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci 2009;106(39):16782–16787. http://www.ncbi.nlm.nih.gov/pubmed/19805373.

  13. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 2013;22(6):399–411. http://www.ncbi.nlm.nih.gov/pubmed/23541627.

  14. Raffetto JD, Mendez MV, Marien BJ, et al. Changes in cellular motility and cytoskeletal actin in fibroblasts from patients with chronic venous insufficiency and in neonatal fibroblasts in the presence of chronic wound fluid. J Vasc Surg. 2001;33(6):1233–41.

    Article  CAS  Google Scholar 

  15. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6.

    Article  Google Scholar 

  16. Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9. https://doi.org/10.1038/nm.3887.

    Article  CAS  Google Scholar 

  17. Moura J, Rodrigues J, Gonçalves M, Amaral C, Lima M, Carvalho E. Impaired T cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2017;14(9):758–69. https://doi.org/10.1038/cmi.2015.116.

    Article  CAS  Google Scholar 

  18. Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9. https://doi.org/10.1038/nm.3887.

    Article  CAS  Google Scholar 

  19. Sawaya AP, Stone RC, Brooks SR, et al. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun. 2020;11(1):4678. https://doi.org/10.1038/s41467-020-18276-0.

    Article  CAS  Google Scholar 

  20. Khanna S, Biswas S, Shang Y, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE. 2010;5(3):e9539. https://doi.org/10.1371/journal.pone.0009539.

    Article  CAS  Google Scholar 

  21. Smith A, Watkins T, Theocharidis G, et al. A novel three-dimensional skin disease model to assess macrophage function in diabetes. Tissue Eng Part C Methods. 2021;27(2):49–58. https://doi.org/10.1089/ten.TEC.2020.0263.

    Article  CAS  Google Scholar 

  22. Theocharidis G, Veves A. Autonomic nerve dysfunction and impaired diabetic wound healing: the role of neuropeptides. Auton Neurosci. 2020;223: 102610.

    Article  CAS  Google Scholar 

  23. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care. 1998;21(5):822–7. https://doi.org/10.2337/diacare.21.5.822.

    Article  CAS  Google Scholar 

  24. Wieman TJ, Smiell JM, Su Y. Efficacy and safely of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study. Diabetes Care. 1998;21(5):822–7.

    Article  CAS  Google Scholar 

  25. Veves A, Falanga V, Armstrong DG, Sabolinski ML, Apligraf Diabetic Foot Ulcer Study. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care. 2001;24(2):290–5. https://doi.org/10.2337/diacare.24.2.290.

    Article  CAS  Google Scholar 

  26. Marston WA, Hanft J, Norwood P, Pollak R, Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–5. https://doi.org/10.2337/diacare.26.6.1701.

    Article  Google Scholar 

  27. Driver VR, Lavery LA, Reyzelman AM, et al. A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regener. 2015;23(6):891–900. https://doi.org/10.1111/wrr.12357.

    Article  Google Scholar 

  28. Tecilazich F, Dinh T, Veves A. Treating diabetic ulcers. Expert Opin Pharmacother. 2011;12(4):593–606. https://doi.org/10.1517/14656566.2011.530658.

    Article  Google Scholar 

  29. Tecilazich F, Dinh TL, Veves A. Emerging drugs for the treatment of diabetic ulcers. Expert Opin Emerg Drugs. 2013;18(2):207–17. https://doi.org/10.1517/14728214.2013.802305.

    Article  CAS  Google Scholar 

  30. Kusumanto YH, van Weel V, Mulder NH, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006;17(6):683–91. https://doi.org/10.1089/hum.2006.17.683.

    Article  CAS  Google Scholar 

  31. Uchi H, Igarashi A, Urabe K, et al. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol. 2009;19(5):461–8. https://doi.org/10.1684/ejd.2009.0750.

    Article  Google Scholar 

  32. Boulton A, Armstrong DG, Kirsner RS, et al. Diagnosis and management of diabetic foot complications. ADA Clinical Compendia. 2018. https://doi.org/10.2337/db20182-1.

    Article  Google Scholar 

  33. An T, Chen Y, Tu Y, Lin P. Mesenchymal stromal cell-derived extracellular vesicles in the treatment of diabetic foot ulcers: application and challenges. Stem Cell Rev Rep. 2021;17(2):369–78. https://doi.org/10.1007/s12015-020-10014-9.

    Article  CAS  Google Scholar 

  34. Gugerell A, Gouya-Lechner G, Hofbauer H, et al. Safety and clinical efficacy of the secretome of stressed peripheral blood mononuclear cells in patients with diabetic foot ulcer-study protocol of the randomized, placebo-controlled, double-blind, multicenter, international phase II clinical trial MARSYAS II. Trials. 2021;22(1):10. https://doi.org/10.1186/s13063-020-04948-1.

    Article  CAS  Google Scholar 

  35. Wang P, Theocharidis G, Vlachos IS, et al. Exosomes derived from epidermal stem cells improve diabetic wound healing. J Investing Dermatol. 2022. https://doi.org/10.1016/j.jid.2022.01.030.

    Article  Google Scholar 

  36. Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering (Basel). 2018;5(3):51. https://doi.org/10.3390/bioengineering5030051.

    Article  CAS  Google Scholar 

  37. Theocharidis G, Yuk H, Roh H, et al. Strain-programmable patch for diabetic wound healing. bioRxiv. 2021. https://doi.org/10.1101/2021.06.07.447423.

    Article  Google Scholar 

  38. Matoori S, Veves A, Mooney DJ. Advanced bandages for diabetic wound healing. Sci Transl Med. 2021;13(585):eabe4839. https://doi.org/10.1126/scitranslmed.abe4839.

    Article  CAS  Google Scholar 

  39. Sharma R, Sharma SK, Mudgal SK, Jelly P, Thakur K. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci Rep. 2021;11(1):2189. https://doi.org/10.1038/s41598-021-81886-1.

    Article  CAS  Google Scholar 

  40. Borys S, Hohendorff J, Frankfurter C, Kiec-Wilk B, Malecki MT. Negative pressure wound therapy use in diabetic foot syndrome-from mechanisms of action to clinical practice. Eur J Clin Invest. 2019;49(4):e13067. https://doi.org/10.1111/eci.13067.

    Article  CAS  Google Scholar 

  41. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5): e1005457.

    Article  Google Scholar 

  42. Theocharidis G, Baltzis D, Roustit M, et al. Integrated skin transcriptomics and serum multiplex assays reveal novel mechanisms of wound healing in diabetic foot ulcers. Diabetes. 2020;69(10):2157–69.

    Article  CAS  Google Scholar 

  43. Gyanchandani R, Lin Y, Lin HM, et al. Intratumor heterogeneity affects gene expression profile test prognostic risk stratification in early breast cancer. Clin Cancer Res. 2016;22(21):5362–9.

    Article  CAS  Google Scholar 

  44. Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci. 2008;105(49):19426–31. https://doi.org/10.1073/pnas.0805230105.

    Article  Google Scholar 

  45. Yoon D, Pastore YD, Divoky V, et al. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem. 2006;281(35):25703–11.

    Article  CAS  Google Scholar 

  46. Déry MAC, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37(3):535–40.

    Article  Google Scholar 

  47. Catrina SB, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia. 2021;64(4):709–16. https://doi.org/10.1007/s00125-021-05380-z.

    Article  CAS  Google Scholar 

  48. Hong WX, Hu MS, Esquivel M, et al. The role of hypoxia-inducible factor in wound healing. Adv Wound Care. 2014;3(5):390–9. https://doi.org/10.1089/wound.2013.0520.

    Article  Google Scholar 

  49. Arden GB, Sivaprasad S. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev. 2011;7(5):291–304. https://doi.org/10.2174/157339911797415620.

    Article  CAS  Google Scholar 

  50. Gu HF, Zheng X, Abu Seman N, et al. Impact of the hypoxia-inducible factor-1 α (HIF1A) Pro582Ser polymorphism on diabetes nephropathy. Diabetes Care. 2013;36(2):415–21. https://doi.org/10.2337/dc12-1125.

    Article  CAS  Google Scholar 

  51. Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–52.

    Article  CAS  Google Scholar 

  52. Theocharidis G, Tekkela S, Veves A, McGrath JA, Onoufriadis A. Single-cell transcriptomics in human skin research: available technologies, technical considerations and disease applications. Exp Dermatol. 2022;31(5):655–73. https://doi.org/10.1111/exd.14547.

    Article  Google Scholar 

  53. Theocharidis G, Bhasin SS, Kounas K, Bhasin MK, Veves A. Single cell RNA-seq analyses of healthy lower extremity skin and diabetic foot ulcers uncover distinct immune landscape of diabetic wound healing. Diabetes. 2018. https://doi.org/10.2337/db18-647-P.

    Article  Google Scholar 

  54. Theocharidis G, Baltzis D, Roustit M, et al. Integrated skin transcriptomics and serum multiplex assays reveal novel mechanisms of wound healing in diabetic foot ulcers. Diabetes. 2020;69(10):2157–69. https://doi.org/10.2337/db20-0188.

    Article  CAS  Google Scholar 

  55. Theocharidis G, Thomas BE, Sarkar D, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022;13(1):181. https://doi.org/10.1038/s41467-021-27801-8.

    Article  CAS  Google Scholar 

  56. Tellechea A, Leal EC, Kafanas A, et al. Mast cells regulate wound healing in diabetes. Diabetes. 2016;65(7):2006–19.

    Article  CAS  Google Scholar 

  57. Tellechea A, Bai S, Dangwal S, et al. Topical application of a mast cell stabilizer improves impaired diabetic wound healing. J Investig Dermatol. 2020;140(4):901–11. https://doi.org/10.1016/j.jid.2019.08.449.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author’s would like to acknowledge the Rongxiang Xu Center for Regenerative therapeutics at Beth Israel Medical Center.

Funding

This work was supported by the National Rongxiang Xu Foundation. No funding was received by the journal for the publication of this article.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Author Contributions

Concept and Design (BJS, GT, EW, ZL, IM, AV). Manuscript drafting (BJS, ZL, EW). Manuscript editing (BJS, GT, EW, ZL, AV).

Disclosures

Brandon James Sumpio, Zhuqing Li, Enya Wang, Ikram Mezghani, Georgios Theocharidis, Aristidis Veves have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis Veves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sumpio, B.J., Li, Z., Wang, E. et al. Future Directions in Research in Transcriptomics in the Healing of Diabetic Foot Ulcers. Adv Ther 40, 67–75 (2023). https://doi.org/10.1007/s12325-022-02348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-022-02348-2

Keywords

  • Diabetic foot ulcers
  • Hypoxia inducible factor-1α
  • Transcriptomics
  • Wound dressing