Skip to main content

Radiotherapy-Specific Chronic Pain Syndromes in the Cancer Population: An Evidence-Based Narrative Review

Abstract

While radiation therapy is increasingly utilized in the treatment paradigm of many solid cancers, the chronic effects of radiation therapies are poorly characterized. Notably, understanding radiation-specific chronic pain syndromes is paramount given that the diagnosis and management of these conditions can serve to prevent long-standing functional impairments, optimize quality of life, and even allow for continued radiotherapy candidacy. These radiation-specific chronic pain phenomena include dermatitis, mucositis, enteritis, connective tissue fibrosis, lymphedema, and neuropathic pain syndromes. It is necessary to maintain a low threshold of suspicion for appropriately diagnosing these conditions as there exists a variance in when these symptoms arise after radiation. However, we present key epidemiological data delineating vulnerable cancer populations for each pain syndrome along with the available evidence for the management for each specific condition.

This is a preview of subscription content, access via your institution.

References

  1. Burton AW, Fanciullo GJ, Beasley RD. Chronic pain in the cancer survivor: a new frontier. Pain Med. 2007;8(2):189–98.

    Article  PubMed  Google Scholar 

  2. Van den Beuken-van Everdingen MH, De Rijke JM, Kessels AG, Schouten HC, Van Kleef M, Patijn J. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol. 2007;18(9):1437–49.

    Article  PubMed  Google Scholar 

  3. Brown MRD, Ramirez JD, Farquhar-Smith P. Pain in cancer survivors. Br J Pain. 2014;8(4):139–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377:1065–75.

    Article  CAS  PubMed  Google Scholar 

  5. Bryant AK, Banegas MP, Martinez ME, et al. Trends in radiation therapy among cancer survivors in the United States, 2000–2030. Cancer Epidemiol Biomarkers Prev. 2017;26(6):963–70.

    Article  PubMed  Google Scholar 

  6. Epstein JB, Stewart KH. Radiation therapy and pain in patients with head and neck cancer. Oral Oncol. 1993;29(3):191–9.

    Google Scholar 

  7. Cleeland CS, Janjan NA, Scott CB, Seiferheld WF, Curran WJ. Cancer pain management by radiotherapists: a survey of radiation therapy oncology group physicians. Int J Radiat Oncol. 2000;47(1):203–8.

    Article  CAS  Google Scholar 

  8. Doo AR, Shin YS, Yoo S, Park JK. Radiation-Induced neuropathic pain successfully treated with systemic lidocaine administration. J Pain Res. 2018;11:545–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brennan PA, Lewthwaite R, Sakthithasan P, et al. Diclofenac mouthwash as a potential therapy for reducing pain and discomfort in chemo-radiotherapy-induced oral mucositis. J Oral Pathol Med. 2020;00:1–4.

    Google Scholar 

  10. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 8th ed. Philadelphia: Wolters Kluwer; 2019.

  11. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9. https://doi.org/10.1016/j.ijrobp.2009.07.1754.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siddiqui F, Movsas B. Management of radiation toxicity in head and neck cancers. Semin Radiat Oncol. 2017;27(4):340–9. https://doi.org/10.1016/j.semradonc.2017.04.008.

    Article  PubMed  Google Scholar 

  13. Simone CB. Thoracic radiation normal tissue injury. Semin Radiat Oncol. 2017;27(4):370–7. https://doi.org/10.1016/j.semradonc.2017.04.009.

    Article  PubMed  Google Scholar 

  14. Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-induced lung injury: assessment and management. Chest. 2019;156(1):P150–162. https://doi.org/10.1016/j.chest.2019.03.033.

  15. Nicholas S, Chen L, Choflet A, et al. Pelvic radiation and normal tissue toxicity. Semin Radiat Oncol. 2017;27(4):358–69. https://doi.org/10.1016/j.semradonc.2017.04.010.

    Article  PubMed  Google Scholar 

  16. Venkatesulu BP, Mahadevan LS, Aliru ML, et al. Radiation-Induced endothelial vascular injury: a review of possible mechanisms. JACC Basic Transl Sci. 2018;3(4):563–72. https://doi.org/10.1016/j.jacbts.2018.01.014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin A, Abu-Isa E, Griffith KA, Ben-Josef E. Toxicity of radiotherapy in patients with collagen vascular disease. Cancer. 2008;113(3):648–53. https://doi.org/10.1002/cncr.23591.

    Article  PubMed  Google Scholar 

  18. Fein DA, Marcus RB, Parsons JT, Mendenhall WM, Million RR. Lhermitte’s sign: Incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1993;27(5):1029–33. https://doi.org/10.1016/0360-3016(93)90519-2.

    Article  CAS  PubMed  Google Scholar 

  19. Laidley HM, Noble DJ, Barnett GC, et al. Identifying risk factors for L’Hermitte’s sign after IMRT for head and neck cancer. Radiat Oncol. 2018;13(1). https://doi.org/10.1186/s13014-018-1015-0.

  20. Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of radiomics for the prediction of radiation-induced toxicity in the IMRT era: current state-of-the-art. Front Oncol. 2020;10:1708.

  21. Teh BS, Woo SY, Butler EB. Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. Oncologist. 1999;4(6):433–42.

    Article  CAS  PubMed  Google Scholar 

  22. Sahgal A, Myrehaug S, Dennis K, et al. A randomized phase II/III study comparing stereotactic body radiotherapy (SBRT) versus conventional palliative radiotherapy (CRT) for patients with spinal metastases. J Clin Oncol. 2017;35(no. 15_suppl). https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS10129.

  23. Schulz-Ertner D, Karger CP, Feuerhake A, et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol. 2007;68(2):449–57.

    Article  Google Scholar 

  24. Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273–82. https://doi.org/10.1016/j.radonc.2012.10.012.

    Article  PubMed  Google Scholar 

  25. Yan M, Kong W, Kerr A, Brundage M. The radiation dose tolerance of the brachial plexus: a systematic review and meta-analysis. Clin Transl Radiat Oncol. 2019;18:23–31. https://doi.org/10.1016/j.ctro.2019.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chon BH, Loeffler JS. The effect of nonmalignant systemic disease on tolerance to radiation therapy. Oncologist. 2002;7(2):136–43. https://doi.org/10.1634/theoncologist.7-2-136.

    Article  PubMed  Google Scholar 

  27. Chen AM, Chen LM, Vaughan A, et al. Head and neck cancer among lifelong never-smokers and ever-smokers: matched-pair analysis of outcomes after radiation therapy. Am J Clin Oncol Cancer Clin Trials. 2011;34(3):270–5. https://doi.org/10.1097/COC.0b013e3181dea40b.

    Article  Google Scholar 

  28. Ryan JL. Ionizing radiation: the good, the bad, and the ugly. J Invest Dermato. 2012;132(3):985–93.

    Article  CAS  Google Scholar 

  29. Salvo N, Barnes E, Van Draanen J, et al. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr Oncol. 2010;17(4):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McQuestion M. Evidence-based skin care management in radiation therapy: clinical update. Semin Oncol Nurs. 2011;27(2):e1–e17..

  31. Bray FN, Simmons BJ, Wolfson AH, Nouri K. Acute and chronic cutaneous reactions to ionizing radiation therapy. Dermatol Ther. 2016;6(2):185–206.

    Article  Google Scholar 

  32. Bey E, Prat M, Duhamel P, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen. 2010;18(1):50–8.

  33. Hymes SR, Strom EA, Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol. 2006;54(1):28–46.

    Article  PubMed  Google Scholar 

  34. Mendelsohn FA, Divino CM, Reis ED, Kerstein MD. Wound care after radiation therapy. Adv Skin Wound Care. 2002;15(5):216–24.

  35. Wolbarst AB, Wiley AL, Nemhauser JB, Christensen DM, Hendee WR. Medical response to a major radiologic emergency: a primer for medical and public health practitioners. Radiology. 2010;254(3):660–77.

    Article  PubMed  Google Scholar 

  36. Warpenburg MJ. Deep friction massage in treatment of radiation-induced fibrosis: rehabilitative care for breast cancer survivors. J Integr Med. 2014;13(5):32.

    Google Scholar 

  37. Zuther JE, Norton S, Armer JM. Lymphedema management: the comprehensive guide for practitioners. New York: Thieme; 2009.

    Book  Google Scholar 

  38. Selim S, Shapiro R, Hwang ES, Rosenbaum E. Post breast therapy pain syndrome (PBTPS). Cancer Supportive Survivorship Care Web Site. 2002. http://www.cancersupportivecare.com/neuropathicpain.php. Accessed 17 Oct 2020.

  39. Brown KR, Rzucidlo E. Acute and chronic radiation injury. J Vasc Surg. 2011;53(1 Suppl):15S-21S.

    Article  PubMed  Google Scholar 

  40. Peter RU. Diagnosis and treatment of cutaneous radiation injuries. In: Panizzon RG, Seegenschmiedt MH, editors. Radiation treatment and radiation reactions in dermatology. Berlin: Springer; 2015. p. 185–8.

    Chapter  Google Scholar 

  41. Hymes SR, Strom EA, Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol. 2006;54(1):28–46.

    Article  PubMed  Google Scholar 

  42. Martin M, Lefaix JL, Delanian S. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol. 2000;47(2):277–90.

    Article  CAS  Google Scholar 

  43. Denham JW, Hauer-Jensen M. The radiotherapeutic injury–a complex ‘wound.’ Radiother Oncol. 2002;63(2):129–45.

    Article  PubMed  Google Scholar 

  44. Mitin T, Zietman AL. Promise and pitfalls of heavy-particle therapy. J Clin Oncol. 2014;32(26):2855–63.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193(4812):293–4.

    Article  CAS  PubMed  Google Scholar 

  46. Gollins S, Gaffney C, Slade S, Swindell R. RCT on gentian violet versus a hydrogel dressing for radiotherapy-induced moist skin desquamation. J Wound Care. 2008;17(6):268–270, 272, 274–265.

  47. Macmillan MS, Wells M, MacBride S, Raab GM, Munro A, MacDougall H. Randomized comparison of dry dressings versus hydrogel in management of radiation-induced moist desquamation. Int J Radiat Oncol. 2007;68(3):864–72.

    Article  CAS  Google Scholar 

  48. Mak SS, Molassiotis A, Wan WM, Lee IY, Chan ES. The effects of hydrocolloid dressing and gentian violet on radiation-induced moist desquamation wound healing. Cancer Nurs. 2000;23(3):220–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sun X, Jiang K, Chen J, et al. A systematic review of maggot debridement therapy for chronically infected wounds and ulcers. Int J Infect Dis. 2014;1(25):32–7.

    Article  Google Scholar 

  50. Prasad KN, Cole WC, Kumar B, Prasad KC. Pros and cons of antioxidant use during radiation therapy. Cancer Treat Rev. 2002;28(2):79–91.

    Article  CAS  PubMed  Google Scholar 

  51. Jacobson G, Bhatia S, Smith BJ, Button AM, Bodeker K, Buatti J. Randomized trial of pentoxifylline and vitamin E vs standard follow-up after breast irradiation to prevent breast fibrosis, evaluated by tissue compliance meter. Int J Radiat Oncol. 2013;85(3):604–8.

    Article  CAS  Google Scholar 

  52. Gothard L, Cornes P, Brooker S, et al. Phase II study of vitamin E and pentoxifylline in patients with late side effects of pelvic radiotherapy. Radiother Oncol. 2005;75(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  53. Delanian S, Balla-Mekias S, Lefaix JL. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol. 1999;17(10):3283–90.

    Article  CAS  PubMed  Google Scholar 

  54. Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition. Radiother Oncol. 2012;105(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  55. Delanian S, Porcher R, Balla-Mekias S, Lefaix JL. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol. 2003;21(13):2545–50.

    Article  CAS  PubMed  Google Scholar 

  56. Hamama S, Delanian S, Monceau V, Vozenin MC. Therapeutic management of intestinal fibrosis induced by radiation therapy: from molecular profiling to new intervention strategies et vice et versa. Fibrogen Tissue Repair. 2012;5(Suppl 1):S13. https://doi.org/10.1186/1755-1536-5-S1-S13.

  57. Hojan K, Milecki P. Opportunities for rehabilitation of patients with radiation fibrosis syndrome. Rep Pract Oncol Radiother. 2014;19(1):1–6.

    Article  PubMed  Google Scholar 

  58. Stubblefield MD, Burstein HJ, Burton AW, et al. NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw. 2009;7(Suppl_5):S1–S26.

  59. Stubblefield MD, Levine A, Custodio CM, Fitzpatrick T. The role of botulinum toxin type A in the radiation fibrosis syndrome: a preliminary report. Arch Phys Med Rehab. 2008;89(3):417–21.

  60. Lussier D, Huskey AG, Portenoy RK. Adjuvant analgesics in cancer pain management. Oncologist. 2004;9(5):571–91.

    Article  CAS  PubMed  Google Scholar 

  61. Milazzo-Kiedaisch CA, Itano J, Dutta PR. The novel role of gabapentin in managing mucositis pain in patients undergoing radiation therapy to the head and neck. Clin J Oncol Nurs. 2016;20(6):623.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sonis ST. The pathobiology of mucositis. Nat Rev Cancer. 2004;4(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  63. Mallick S, Benson R, Rath GK. Radiation induced oral mucositis: a review of current literature on prevention and management. Eur Arch Otorhinolaryngol. 2016;273(9):2285–93.

    Article  PubMed  Google Scholar 

  64. Bar AdV, Weinstein G, Dutta PR, Chalian A, Both S, Quon H. Gabapentin for the treatment of pain related to radiation-induced mucositis in patients with head and neck tumors treated with intensity-modulated radiation therapy. Head Neck J Sci Spec. 2010;32(2):173–7.

    Google Scholar 

  65. Leenstra JL, Miller RC, Qin R, et al. Doxepin rinse versus placebo in the treatment of acute oral mucositis pain in patients receiving head and neck radiotherapy with or without chemotherapy: a phase III, randomized, double-blind trial (NCCTG-N09C6 [Alliance]). J Clin Oncol. 2014;32(15):1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gautam AP, Fernandes DJ, Vidyasagar MS, Maiya AG, Guddattu V. Low level laser therapy against radiation induced oral mucositis in elderly head and neck cancer patients-a randomized placebo controlled trial. J Photochem Photobiol. 2015;1(144):51–6.

    Article  CAS  Google Scholar 

  67. Elting LS, Cooksley CD, Chambers MS, Garden AS. Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies. Int J Radiat Oncol. 2007;68(4):1110–20.

    Article  Google Scholar 

  68. Trotti A, Bellm LA, Epstein JB, et al. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: a systematic literature review. Radiother Oncol. 2003;66(3):253–62.

    Article  PubMed  Google Scholar 

  69. Russo G, Haddad R, Posner M, Machtay M. Radiation treatment breaks and ulcerative mucositis in head and neck cancer. Oncologist. 2008:13(8):886–98.

  70. Lalla RV, Sonis ST, Peterson DE. Management of oral mucositis in patients who have cancer. Dent Clin N Am. 2008;52(1):61–77.

    Article  PubMed  Google Scholar 

  71. National Cancer Institute. Common Terminology Criteria for Adverse Events. National Cancer Institute Cancer Therapy Evaluation Program. 2009. https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf. Accessed 17 Oct 2020.

  72. McGuire DB, Fulton JS, Park J, et al. Systematic review of basic oral care for the management of oral mucositis in cancer patients. Supp Care Cancer. 2013;21(11):3165–77.

    Article  Google Scholar 

  73. Bossi P, Numico G, De Santis V, et al. Prevention and treatment of oral mucositis in patients with head and neck cancer treated with (chemo) radiation: report of an Italian survey. Supp Care Cancer. 2014;22(7):1889–96.

    Google Scholar 

  74. Kazemian A, Kamian S, Aghili M, Hashemi FA, Haddad P. Benzydamine for prophylaxis of radiation-induced oral mucositis in head and neck cancers: a double-blind placebo-controlled randomized clinical trial. Eur J Cancer Care. 2009;18(2):174–8.

    Article  CAS  Google Scholar 

  75. Epstein JB, Silverman S Jr, Paggiarino DA, et al. Benzydamine HCl for prophylaxis of radiation-induced oral mucositis: results from a multicenter, randomized, double-blind, placebo-controlled clinical trial. Cancer. 2001;92(4):875–85.

    Article  CAS  PubMed  Google Scholar 

  76. Nicolatou-Galitis O, Sarri T, Bowen J, et al. Systematic review of anti-inflammatory agents for the management of oral mucositis in cancer patients. Supp Care Cancer. 2013;21(11):3179–89.

    Article  Google Scholar 

  77. Cengiz M, Özyar E, Öztürk D, Akyol F, Atahan IL, Hayran M. Sucralfate in the prevention of radiation-induced oral mucositis. J Clin Gastroenterol. 1999;28(1):40–3.

    Article  CAS  PubMed  Google Scholar 

  78. Carter DL, Hebert ME, Smink K, Leopold KA, Clough RL, Brizel DM. Double blind randomized trial of sucralfate vs placebo during radical radiotherapy for head and neck cancers. Head Neck J Sci Spec. 1999;21(8):760–6.

    Article  CAS  Google Scholar 

  79. Saunders DP, Epstein JB, Elad S, et al. Systematic review of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the management of oral mucositis in cancer patients. Supp Care Cancer. 2013;21(11):3191–207.

    Article  Google Scholar 

  80. Nicolatou O, Sotiropoulou-Lontou A, Skarlatos J, Kyprianou K, Kolitsi G, Dardoufas K. A pilot study of the effect of granulocyte–macrophage colony–stimulating factor on oral mucositis in head and neck cancer patients during x-radiation therapy: a preliminary report. Int J Radiat Oncol. 1998;42(3):551–6.

    Article  CAS  Google Scholar 

  81. Wagner W, Alfrink M, Haus U, Matt J. Treatment of irradiation-induced mucositis with growth factors (rhGM-CSF) in patients with head and neck cancer. Anticancer Res. 1999;19(1B):799–803.

    CAS  PubMed  Google Scholar 

  82. Saarilahti K, Kajanti M, Joensuu T, Kouri M, Joensuu H. Comparison of granulocyte-macrophage colony-stimulating factor and sucralfate mouthwashes in the prevention of radiation-induced mucositis: a double-blind prospective randomized phase III study. Int J Radiat Oncol. 2002;54(2):479–85.

    Article  CAS  Google Scholar 

  83. McAleese JJ, Bishop KM, A'hern R, Henk JM. Randomized phase II study of GM-CSF to reduce mucositis caused by accelerated radiotherapy of laryngeal cancer. Br J Radiol. 2006;79(943):608–13.

  84. Hoffman KE, Pugh SL, James JL, et al. The impact of concurrent granulocyte–macrophage colony-stimulating factor on quality of life in head and neck cancer patients: results of the randomized, placebo-controlled Radiation Therapy Oncology Group 9901 trial. Qual Life Res. 2014;23(6):1841–58.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ryu JK, Swann S, LeVeque F, et al. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: a double-blind placebo-controlled prospective phase III study by Radiation Therapy Oncology Group 9901. Int J Radiat Oncol. 2007;67(3):643–50.

    Article  CAS  Google Scholar 

  86. Masucci G, Broman P, Kelly C, et al. Therapeutic efficacy by recombinant human granulocyte/monocyte-colony stimulating factor on mucositis occurring in patients with oral and oropharynx tumors treated with curative radiotherapy. Med Oncol. 2005;22(3):247–56.

    Article  PubMed  Google Scholar 

  87. Spijkervet FK, Van Saene HK, Van Saene JJ, et al. Effect of selective elimination of the oral flora on mucositis in irradiated head and neck cancer patients. J Surg Oncol. 1991;46(3):167–73.

    Article  CAS  PubMed  Google Scholar 

  88. Symonds RP, McIlroy P, Khorrami J, et al. The reduction of radiation mucositis by selective decontamination antibiotic pastilles: a placebo-controlled double-blind trial. Br J Cancer. 1996;74(2):312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wijers OB, Levendag PC, Harms ER, et al. Mucositis reduction by selective elimination of oral flora in irradiated cancers of the head and neck: a placebo-controlled double-blind randomized study. Int J Radiat Oncol. 2001;50(2):343–52.

    Article  CAS  Google Scholar 

  90. de Paula EF, Bezinelli LM, da Graça Lopes RM, Nascimento Sobrinho JJ, Hamerschlak N, Correa L. Efficacy of cryotherapy associated with laser therapy for decreasing severity of melphalan-induced oral mucositis during hematological stem-cell transplantation: a prospective clinical study. Hematol Oncol. 2015;33(3):152–8.

    Article  CAS  Google Scholar 

  91. Saadeh CE. Chemotherapy‐and radiotherapy‐induced oral mucositis: review of preventive strategies and treatment. Pharmacotherapy. 2005;25(4):540–54.

  92. Spielberger R, Stiff P, Bensinger W, et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Eng J Med. 2004;351(25):2590–8.

    Article  CAS  Google Scholar 

  93. Vadhan-Raj S, Trent J, Patel S, et al. Single-dose palifermin prevents severe oral mucositis during multicycle chemotherapy in patients with cancer: a randomized trial. Ann Int Med. 2010;153(6):358–67.

    Article  PubMed  Google Scholar 

  94. Henke M, Alfonsi M, Foa P, et al. Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy for head and neck cancer: a randomized, placebo-controlled trial. J Clin Oncol. 2011;29(20):2815–20.

    Article  CAS  PubMed  Google Scholar 

  95. Le QT, Kim HE, Schneider CJ, et al. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J Clin Oncol. 2011;29(20):2808–14.

    Article  CAS  PubMed  Google Scholar 

  96. Bianco JA, Appelbaum FR, Nemunaitis J, et al. Phase I-II trial of pentoxifylline for the prevention of transplant-related toxicities following bone marrow transplantation. Blood. 1992;79(12):3397.

    Google Scholar 

  97. Peterson DE, Jones JB, Petit RG. Randomized, placebo-controlled trial of Saforis for prevention and treatment of oral mucositis in breast cancer patients receiving anthracycline-based chemotherapy. Cancer. 2007;109(2):322–31.

    Article  CAS  PubMed  Google Scholar 

  98. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer. 1998;83(7):1433–9.

    Article  CAS  PubMed  Google Scholar 

  99. Tsujimoto T, Yamamoto Y, Wasa M, et al. L-glutamine decreases the severity of mucositis induced by chemoradiotherapy in patients with locally advanced head and neck cancer: a double-blind, randomized, placebo-controlled trial. Oncol Rep. 2015;33(1):33–9.

  100. Chattopadhyay S, Saha A, Azam M, Mukherjee A, Sur PK. Role of oral glutamine in alleviation and prevention of radiation-induced oral mucositis: a prospective randomized study. South Asian J Cancer. 2014;3(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gautam AP, Fernandes DJ, Vidyasagar MS, Maiya AG, Vadhiraja BM. Low level laser therapy for concurrent chemoradiotherapy induced oral mucositis in head and neck cancer patients–a triple blinded randomized controlled trial. Radiother Oncol. 2012;104(3):349–54.

    Article  PubMed  Google Scholar 

  102. Lima AG, Antequera R, Peres MP, Snitcosky IM, Federico MH, Villar RC. Efficacy of low-level laser therapy and aluminum hydroxide in patients with chemotherapy and radiotherapy-induced oral mucositis. Brazil Dent J. 2010;21(3):186–92.

    Article  Google Scholar 

  103. Oberoi S, Zamperlini-Netto G, Beyene J, Treister NS, Sung L. Effect of prophylactic low level laser therapy on oral mucositis: a systematic review and meta-analysis. PLoS One. 2014;9(9):e107418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mills EE. The modifying effect of beta-carotene on radiation and chemotherapy induced oral mucositis. Brit J Cancer. 1988;57(4):416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mose S, Adamietz IA, Saran F, et al. Can prophylactic application of immunoglobulin decrease radiotherapy-induced oral mucositis? Am J Clin Oncol. 1997;20(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  106. Labar B, Mrsić M, Pavletić Z, et al. Prostaglandin E2 for prophylaxis of oral mucositis following BMT. Bone Marrow Transplant. 1993;11(5):379–82.

    CAS  PubMed  Google Scholar 

  107. Kührer I, Kuzmits R, Linkesch W, Ludwig H. Topical PGE2 enhances healing of chemotherapy-associated mucosal lesions. Lancet. 1986;327(8481):623.

    Article  Google Scholar 

  108. Bubley GJ, Chapman B, Chapman SK, Crumpacker CS, Schnipper LE. Effect of acyclovir on radiation- and chemotherapy-induced mouth lesions. Antimicrob Agents Chemother. 1989;33(6):862–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Trotti A, Garden A, Warde P, et al. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Antimicrob Agents Chemother. 2004;58(3):674–81.

    CAS  Google Scholar 

  110. Adamietz IA, Rahn R, Böttcher HD, Schäfer V, Reimer K, Fleischer W. Prophylaxis with povidone-iodine against induction of oral mucositis by radiochemotherapy. Supp Care Cancer. 1998;6(4):373–7.

    Article  CAS  Google Scholar 

  111. El-Sayed S, Nabid A, Shelley W, et al. Prophylaxis of radiation-associated mucositis in conventionally treated patients with head and neck cancer: a double-blind, phase III, randomized, controlled trial evaluating the clinical efficacy of an antimicrobial lozenge using a validated mucositis scoring system. J Clin Oncol. 2002;20(19):3956–63.

    Article  CAS  PubMed  Google Scholar 

  112. Nicolatou-Galitis O, Velegraki A, Sotiropoulou-Lontou A, et al. Effect of fluconazole antifungal prophylaxis on oral mucositis in head and neck cancer patients receiving radiotherapy. Supp Care Cancer. 2006;14(1):44–51.

    Article  Google Scholar 

  113. Christoforou J, Karasneh J, Manfredi M, et al. World workshop on oral medicine VII: non-opioid pain management of head and neck chemo/radiation-induced mucositis: a systematic review. Oral Dis. 2019;25:182–92.

    Article  PubMed  Google Scholar 

  114. Kakoei S, Pardakhty A, Maryam-Al-Sadat Hashemipour HL, Kalantari B, Tahmasebi E. Comparison the pain relief of amitriptyline mouthwash with benzydamine in oral mucositis. J Dent. 2018;19(1):34.

    Google Scholar 

  115. Kostrica R, Rottenberg J, Kvech J, Betka J, Jablonicky P. Randomised, double-blind comparison of efficacy and tolerability of diclofenac mouthwash versus placebo in mucositis of oral cavity by radiotherapy. J Drug Assess. 2002;5(2):99–114.

    Google Scholar 

  116. Kim JH, Chu FC, Lakshmi V, Houde R. Benzydamine HCl, a new agent for the treatment of radiation mucositis of the oropharynx. Am J Clin Oncol. 1986;9(2):132–4.

    Article  CAS  PubMed  Google Scholar 

  117. Carvalho PA, Jaguar GC, Pellizzon AC, Prado JD, Lopes RN, Alves FA. Evaluation of low-level laser therapy in the prevention and treatment of radiation-induced mucositis: a double-blind randomized study in head and neck cancer patients. Oral Oncol. 2011;47(12):1176–81.

    Article  CAS  PubMed  Google Scholar 

  118. Lee JE, Anderson CM, Perkhounkova Y, Sleeuwenhoek BM, Louison RR. Transcutaneous electrical nerve stimulation reduces resting pain in head and neck cancer patients: a randomized and placebo-controlled double-blind pilot study. Cancer Nurs. 2019;42(3):218–28.

    Article  PubMed  Google Scholar 

  119. Harb AH, Abou Fadel C, Sharara AI. Radiation enteritis. Curr Gastroenterol Rep. 2014;16(5):383.

    Article  PubMed  Google Scholar 

  120. Bye A, Tropé C, Loge JH, Hjermstad M, Kaasa S. Health-related quality of life and occurrence of intestinal side effects after pelvic radiotherapy: evaluation of long-term effects of diagnosis and treatment. Acta Oncol. 2000;39(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  121. Cox JD, Byhardt RW, Wilson JF, Haas JS, Komaki R, Olson LE. Complications of radiation therapy and factors in their prevention. World J Surg. 1986;10(2):171–88.

    Article  CAS  PubMed  Google Scholar 

  122. Hauer-Jensen M, Wang J, Denham JW. Bowel injury: current and evolving management strategies. Sem Radiat Oncol. 2003;13(3):358–371.

  123. Theis VS, Sripadam R, Ramani V, Lal S. Chronic radiation enteritis. Clin Oncol. 2010;22(1):70–83.

    Article  CAS  Google Scholar 

  124. Ooi BS, Tjandra JJ, Green MD. Morbidities of adjuvant chemotherapy and radiotherapy for resectable rectal cancer. Dis Colon Rectum. 1999;42(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  125. Gami B, Harrington K, Blake P, et al. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Alimen Pharmacol Ther. 2003;18(10):987–94.

    Article  CAS  Google Scholar 

  126. Eifel PJ, Levenback C, Wharton JT, Oswald MJ. Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol. 1995;32(5):1289–300.

    Article  CAS  Google Scholar 

  127. Resbeut M, Marteau P, Cowen D, et al. A randomized double blind placebo controlled multicenter study of mesalazine for the prevention of acute radiation enteritis. Radiother Oncol. 1997;44(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  128. Langley RE, Bump EA, Quartuccio SG, Medeiros D, Braunhut SJ. Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer. 1997;75(5):666–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leadon SA. Repair of DNA damage produced by ionizing radiation: a minireview. Semin Radiat Oncol. 1996;6(4):295–305.

  130. Clarke AR, Gledhill S, Hooper ML, Bird CC, Wyllie AH. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene. 1994;9(6):1767.

    CAS  PubMed  Google Scholar 

  131. Potten CS, Booth C. The role of radiation-induced and spontaneous apoptosis in the homeostasis of the gastrointestinal epithelium: a brief review. Comp Biochem Physiol. 1997;118(3):473–8.

    Article  CAS  Google Scholar 

  132. Baker DG, Krochak RJ. The response of the microvascular system to radiation: a review. Cancer Invest. 1989;7(3):287–94.

    Article  CAS  PubMed  Google Scholar 

  133. Hopewell JW, Calvo W, Jaenke R, Reinhold HS, Robbins ME, Whitehouse EM. Microvasculature and radiation damage. In: Hinkelbein W, Bruggmoser G, Frommhold H, Wannemacher M, editors. Acute and long-term side-effects of radiotherapy. Springer: Berlin, Heidelberg; 1993. p. 1–16.

  134. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7.

    Article  CAS  PubMed  Google Scholar 

  135. Wang J, Zheng H, Ou X, Fink LM, Hauer-Jensen M. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol. 2002;160(6):2063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Verheij M, Dewit LG, Boomgaard MN, Brinkman HJ, van Mourik JA. Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor. Radiat Res. 1994;137(2):202–7.

    Article  CAS  PubMed  Google Scholar 

  137. Dunn MM, Drab EA, Rubin DB. Effects of irradiation on endothelial cell-polymorphonuclear leukocyte interactions. J Appl Physiol. 1986;60(6):1932–7.

    Article  CAS  PubMed  Google Scholar 

  138. Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. W J Gastroenterol. 2007;13(22):3047.

    Article  CAS  Google Scholar 

  139. Tanaka M, Kamiya Y, Shimizu H, Watanabe T, Naito N, Baba H. Neural block therapy for radiation enteritis: a case report. J A Clin Rep. 2019;5(1):20.

    Article  Google Scholar 

  140. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  141. Gervaz P, Morel P, Vozenin-Brotons MC. Molecular aspects of intestinal radiation-induced fibrosis. Curr Molec Med. 2009;9(3):273–80.

    Article  CAS  Google Scholar 

  142. Haydont V, Vozenin-Brotons MC. Maintenance of radiation-induced intestinal fibrosis: cellular and molecular features. W J Gastroenterol. 2007;13(19):2675.

    Article  CAS  Google Scholar 

  143. Thompson JS, Saxena SK, Sharp JG. Regulation of intestinal regeneration: new insights. Micros Res Techniq. 2000;51(2):129–37.

    Article  CAS  Google Scholar 

  144. Chater C, Saudemont A, Zerbib P. Chronic radiation enteritis. J Visc Surg. 2019;156(2):175–6.

    Article  CAS  PubMed  Google Scholar 

  145. Delia P, Sansotta G, Donato V, et al. Use of probiotics for prevention of radiation-induced diarrhea. W J Gastroenterol. 2007;13(6):912.

    Article  CAS  Google Scholar 

  146. Urbancsek H, Kazar T, Mezes I, Neumann K. Results of a double-blind, randomized study to evaluate the efficacy and safety of Antibiophilus® in patients with radiation-induced diarrhoea. Eur J Gastroenterol Hepatol. 2001;13(4):391–6.

    Article  CAS  PubMed  Google Scholar 

  147. Floch MH, Walker WA, Guandalini S, et al. Recommendations for probiotic use—2008. J Clin Gastroenterol. 2008;1(42):S104–8.

    Article  Google Scholar 

  148. Beer WH, Fan A, Halsted CH. Clinical and nutritional implications of radiation enteritis. Am J Clin Nutr. 1985;41(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  149. Sekhon S. Chronic radiation enteritis: women’s food tolerances after radiation treatment for gynecologic cancer. J Acad Nutr Diet. 2000;100(8):941.

    CAS  Google Scholar 

  150. McGough C, Baldwin C, Frost G, Andreyev HJ. Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br J Cancer. 2004;90(12):2278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Koyyalagunta D, Engle MP, Yu J, Feng L, Novy DM. The effectiveness of alcohol versus phenol based splanchnic nerve neurolysis for the treatment of intra-abdominal cancer pain. Pain Phys. 2016;19(4):281–92.

    Article  Google Scholar 

  152. Amr SA, Reyad RM, Othman AH, et al. Comparison between radiofrequency ablation and chemical neurolysis of thoracic splanchnic nerves for the management of abdominal cancer pain, randomized trial. Eur J Pain. 2018;22(10):1782–90.

    Article  CAS  PubMed  Google Scholar 

  153. Khosla A, Adeyefa O, Nasir S. Successful treatment of radiation-induced proctitis pain by blockade of the ganglion impar in an elderly patient with prostate cancer: a case report. Pain Med. 2013;14(5):662–6.

    Article  PubMed  Google Scholar 

  154. De Micheli C, Fornengo P, Bosio A, Epifani G, Pascale C. Severe radiation-induced proctitis treated with botulinum anatoxin type A. J Clin Oncol. 2003;21(13):2627–2627.

    Article  PubMed  Google Scholar 

  155. Vuong T, Waschke K, Niazi T, et al. The value of Botox-A in acute radiation proctitis: results from a phase I/II study using a three-dimensional scoring system. Int J Radiat Oncol. 2011;80(5):1505–11.

    Article  Google Scholar 

  156. Shen XJ, Liu L, Zhu JY. Radiofrequency ablation in a patient with radiation enteritis: a case report. Medicine (Baltimore). 2018;97(47):e13328.

  157. DiFrancesco T, Khanna A, Stubblefield MD. Clinical evaluation and management of cancer survivors with radiation fibrosis syndrome. Semin Oncol Nurs. 2020;36(1):150982.

    Article  PubMed  Google Scholar 

  158. Stubblefield MD. Clinical evaluation and management of radiation fibrosis syndrome. Phys Med Rehabil Clin N Am. 2017;28(1):89–100.

    Article  PubMed  Google Scholar 

  159. Kline-Quiroz C, Nori P, Stubblefield MD. Cancer rehabilitation: acute and chronic issues, nerve injury, radiation sequelae, surgical and chemo-related, part 1. Med Clin North Am. 2020;104(2):239–50.

    Article  PubMed  Google Scholar 

  160. Petersen C, Würschmidt F. Late toxicity of radiotherapy: a problem or a challenge for the radiation oncologist? Breast Care. 2011;6(5):369–74.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rostami R, Mittal SO, Radmand R, Jabbari B. Incobotulinum toxin-A improves post-surgical and post-radiation pain in cancer patients. Toxins (Basel). 2016;8(1):22.

  162. Stubblefield MD, Keole N. Upper body pain and functional disorders in patients with breast cancer. PM&R. 2014;6(2):170–83.

    Article  Google Scholar 

  163. Ryttov N, Blichert-Toft M, Madsen EL, Weber J. Influence of adjuvant irradiation on shoulder joint function after mastectomy for breast carcinoma. Acta Radiol Oncol. 1983;22(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  164. Vecht CJ. Arm pain in the patient with breast cancer. J Pain Symptom Manage. 1990;5(2):109–17.

    Article  CAS  PubMed  Google Scholar 

  165. Stubblefield MD, Custodio CM, Franklin DJ. Cardiopulmonary rehabilitation and cancer rehabilitation. 3. Cancer rehabilitation. Arch Phys Med Rehabil. 2006;87(3 Suppl 1):S65–71.

  166. Serra-Añó P, Inglés M, Bou-Catalá C, Iraola-Lliso A, Espí-López GV. Effectiveness of myofascial release after breast cancer surgery in women undergoing conservative surgery and radiotherapy: a randomized controlled trial. Supp Care Cancer. 2019;27(7):2633–41.

    Article  Google Scholar 

  167. McNeely ML, Campbell K, Ospina M, et al. Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev. 2010(6):CD005211.

  168. Careskey H, Narang S. Interventional anesthetic methods for pain in hematology/oncology patients. Hematol Oncol Clin North Am. 2018;32(3):433–45.

    Article  PubMed  Google Scholar 

  169. Okunieff P, Augustine E, Hicks JE, et al. Pentoxifylline in the treatment of radiation-induced fibrosis. J Clin Oncol. 2004;22(11):2207–13.

    Article  CAS  PubMed  Google Scholar 

  170. Kaidar-Person O, Marks LB, Jones EL. Pentoxifylline and vitamin E for treatment or prevention of radiation-induced fibrosis in patients with breast cancer. Breast J. 2018;24(5):816–9.

    Article  CAS  PubMed  Google Scholar 

  171. Bach CA, Wagner I, Lachiver X, Baujat B, Chabolle F. Botulinum toxin in the treatment of post-radiosurgical neck contracture in head and neck cancer: a novel approach. Eur Ann Otorhinolaryngol Head Neck Dis. 2012;129(1):6–10.

    Article  PubMed  Google Scholar 

  172. Hartl DM, Cohen M, Juliéron M, Marandas P, Janot F, Bourhis J. Botulinum toxin for radiation-induced facial pain and trismus. Otolaryngol Head Neck Surg. 2008;138(4):459–63.

    Article  PubMed  Google Scholar 

  173. Stubblefield MD, Levine A, Custodio CM, Fitzpatrick T. The role of botulinum toxin type A in the radiation fibrosis syndrome: a preliminary report. Arch Phys Med Rehabil. 2008;89(3):417–21.

    Article  PubMed  Google Scholar 

  174. Mittal S, Machado DG, Jabbari B. OnabotulinumtoxinA for treatment of focal cancer pain after surgery and/or radiation. Pain Med. 2012;13(8):1029–33.

    Article  PubMed  Google Scholar 

  175. Pritchard J, Anand P, Broome J, et al. Double-blind randomized phase II study of hyperbaric oxygen in patients with radiation-induced brachial plexopathy. Radiother Oncol. 2001;58(3):279–86.

    Article  CAS  PubMed  Google Scholar 

  176. Ewertz M, Jensen AB. Late effects of breast cancer treatment and potentials for rehabilitation. Acta Oncol. 2011;50(2):187–93.

    Article  PubMed  Google Scholar 

  177. Ezzo J, Manheimer E, McNeely ML, et al. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database Syst Rev. 2015(5):CD003475.

  178. Smoot B, Chiavola-Larson L, Lee J, Manibusan H, Allen DD. Effect of low-level laser therapy on pain and swelling in women with breast cancer-related lymphedema: a systematic review and meta-analysis. J Cancer Surviv. 2015;9(2):287–304.

    Article  PubMed  Google Scholar 

  179. Beesley VL, Rowlands IJ, Hayes SC, et al. Incidence, risk factors and estimates of a woman’s risk of developing secondary lower limb lymphedema and lymphedema-specific supportive care needs in women treated for endometrial cancer. Gynecol Oncol. 2015;136(1):87–93.

    Article  PubMed  Google Scholar 

  180. Wiltink LM, King M, Müller F, et al. A systematic review of the impact of contemporary treatment modalities for cervical cancer on women’s self-reported health-related quality of life. Support Care Cancer. 2020;28(10):4627–44.

    Article  CAS  PubMed  Google Scholar 

  181. Watanabe Y, Koshiyama M, Seki K, et al. Development and themes of diagnostic and treatment procedures for secondary leg lymphedema in patients with gynecologic cancers. Healthcare. 2019;7(3).

  182. Smith BG, Lewin JS. Lymphedema management in head and neck cancer. Curr Opin Otolaryngol Head Neck Surg. 2010;18(3):153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kligman L, Wong RK, Johnston M, Laetsch NS. The treatment of lymphedema related to breast cancer: a systematic review and evidence summary. Supp Care Cancer. 2004;12(6):421–31.

    Article  Google Scholar 

  184. Mobarakeh ZS, Mokhtari-Hesari P, Lotfi-Tokaldany M, Montazeri A, Heidari M, Zekri F. Combined decongestive therapy and reduction of pain and heaviness in patients with breast cancer-related lymphedema. Supp Care Cancer. 2019;27(10):3805–11.

    Article  Google Scholar 

  185. Ayhan FF, Aykut M, Genç H, Mansız Kaplan B, Soran A. Is complex decongestive physical therapy safe for median nerve at the level of carpal tunnel in breast cancer related lymphedema? Lymphat Res Biol. 2019;17(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  186. Imamoğlu N, Karadibak D, Ergin G, Yavuzşen T. The effect of education on upper extremity function in patients with lymphedema after breast cancer treatments. Lymphat Res Biol. 2016;14(3):142–7.

    Article  PubMed  Google Scholar 

  187. Melam GR, Buragadda S, Alhusaini AA, Arora N. Effect of complete decongestive therapy and home program on health- related quality of life in post mastectomy lymphedema patients. BMC Womens Health. 2016;16:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Dennert G, Horneber M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database of Sys Rev. 2006(3):CD005037.

  189. Teas J, Cunningham JE, Cone L, et al. Can hyperbaric oxygen therapy reduce breast cancer treatment-related lymphedema? A pilot study. J Womens Health. 2004;13(9):1008–18.

    Article  Google Scholar 

  190. Kim J, Park HS, Cho SY, Baik HJ, Kim JH. The effect of stellate ganglion block on intractable lymphedema after breast cancer surgery. Korean J Pain. 2015;28(1):61–3.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Park JH, Min YS, Chun SM, Seo KS. Effects of stellate ganglion block on breast cancer-related lymphedema: comparison of various injectates. Pain Phys. 2015;18(1):93–9.

    Google Scholar 

  192. Markkula SP, Leung N, Allen VB, Furniss D. Surgical interventions for the prevention or treatment of lymphoedema after breast cancer treatment. Cochrane Database Syst Rev. 2019;2(2):CD011433.

  193. Hartiala P, Suominen S, Suominen E, et al. Phase 1 Lymfactin(®) study: short-term safety of combined adenoviral VEGF-C and lymph node transfer treatment for upper extremity lymphedema. J Plast Reconstr Aesthet Surg. 2020;73(9):1612–21.

    Article  PubMed  Google Scholar 

  194. Delanian S, Lefaix J-L. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol. 2004;73(2):119–31. https://doi.org/10.1016/j.radonc.2004.08.021.

    Article  PubMed  Google Scholar 

  195. Dumitru D, Amato AA, Zwarts MJ. Electrodiagnostic medicine. Philadelphia: Hanley & Belfus; 2002. p. 777–836.

  196. Olsen NK, Pfeiffer P, Johannsen L, Schrøder H, Rose C. Radiation-induced brachial plexopathy: neurological follow-up in 161 recurrence-free breast cancer patients. Int J Radiat Oncol. 1993;26(1):43–9. https://doi.org/10.1016/0360-3016(93)90171-Q.

    Article  CAS  Google Scholar 

  197. Fathers E, Thrush D, Huson SM, Norman A. Radiation-induced brachial plexopathy in women treated for carcinoma of the breast. Clin Rehab. 2002;16(2):160–5. https://doi.org/10.1191/0269215502cr470oa.

    Article  Google Scholar 

  198. Cai Z, Li Y, Hu Z, et al. Radiation-induced brachial plexopathy in patients with nasopharyngeal carcinoma: a retrospective study. Oncotarget. 2016;7(14):18887–95. https://doi.org/10.18632/oncotarget.7748.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Jaeckle KA. Neurological manifestations of neoplastic and radiation-induced plexopathies. Semin Neurol. 2004;24(04):385–93. https://doi.org/10.1055/s-2004-861533.

    Article  PubMed  Google Scholar 

  200. Kori SH, Foley KM, Posner JB. Brachial plexus lesions in patients with cancer=100 cases. Neurol. 1981;31(1):45–45. https://doi.org/10.1212/WNL.31.1.45.

    Article  CAS  Google Scholar 

  201. Forquer JA, Fakiris AJ, Timmerman RD, et al. Brachial plexopathy from stereotactic body radiotherapy in early-stage NSCLC: dose-limiting toxicity in apical tumor sites. Radiother Oncol. 2009;93(3):408–13.

    Article  PubMed  Google Scholar 

  202. Powell S, Cooke J, Parsons C. Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother Oncol. 1990;18(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  203. Dropcho EJ. Neurotoxicity of radiation therapy. Neurol Clin. 2010;28(1):217–234.

  204. Ashenhurst EM, Quartey GRC, Starreveld A. Lumbo-sacral radiculopathy induced by radiation. Can J Neurol Sci. 1977;4(4):259–63.

    Article  CAS  PubMed  Google Scholar 

  205. Bourhafour I, Benoulaid M, El Kacemi H, El Majjaoui S, Kebdani T, Benjaafar N. Lumbosacral plexopathy: a rare long term complication of concomitant chemo-radiation for cervical cancer. Gynecol Oncol Res Pract. 2015;2:12. https://doi.org/10.1186/s40661-015-0019-9.

  206. Thomas JE, Cascino TL, Earle JD. Differential diagnosis between radiation and tumor plexopathy of the pelvis. Neurol. 1985;35(1):1–1.

    Article  CAS  Google Scholar 

  207. Pradat P-F, Delanian S. Late radiation injury to peripheral nerves. Hand Clin Neurol. 2013;115:743–58.

    Article  Google Scholar 

  208. Schierle C, Winograd J. Radiation-induced brachial plexopathy: review. Complication without a cure. J Reconstr Microsurg. 2004;20(2):149–152.

  209. Delanian S, Lefaix J-L. Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol. 2007;17(2):99–107.

    Article  PubMed  Google Scholar 

  210. Narakas AO. Operative treatment for radiation-induced and metastatic brachial plexopathy in 45 cases, 15 having an omentoplasty. Bull Hosp Jt Dis. 1984;44(2):354–75.

    CAS  Google Scholar 

  211. Brunelli G, Brunelli F. Surgical treatment of actinic brachial plexus lesions: free microvascular transfer of the greater omentum. J Reconsrt Microsurg. 1985;1(3):197–200.

    Article  CAS  Google Scholar 

  212. Killer HE, Hess K. Natural history of radiation-induced brachial plexopathy compared with surgically treated patients. J Neurol. 1990;237(4):247–50.

    Article  CAS  PubMed  Google Scholar 

  213. Jiang J, Li Y, Shen Q, et al. Effect of pregabalin on radiotherapy-related neuropathic pain in patients with head and neck cancer: a randomized controlled trial. J Clin Oncol. 2019;37(2):135–43.

    Article  CAS  PubMed  Google Scholar 

  214. Stubblefield MD, Levine A, Custodio CM, Fitzpatrick T. The role of botulinum toxin type A in the radiation fibrosis syndrome: a preliminary report. Arch Phys Med Rehab. 2008;89(3):417–21.

    Article  Google Scholar 

  215. Hartl DM, Cohen M, Juliéron M, Marandas P, Janot F, Bourhis J. Botulinum toxin for radiation-induced facial pain and trismus. Otolaryngol-Head Neck Surg. 2008;138(4):459–63.

    Article  PubMed  Google Scholar 

  216. Mailly M, Benzakin S, Chauvin A, Brasnu D, Ayache D. Radiation-induced head and neck pain: management with botulinum toxin a injections. Cancer Radiother. 2019;23(4):312–5.

    Article  CAS  PubMed  Google Scholar 

  217. Mittal SO, Jabbari B. Botulinum neurotoxins and cancer—a review of the literature. Toxins (Basel). 2020;12(1):32. https://doi.org/10.3390/toxins12010032

  218. Sim WS. Application of botulinum toxin in pain management. Korean J Pain. 2011;24(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Park J, Park H. Botulinum toxin for the treatment of neuropathic pain. Toxins. 2017;9(9):260.

    Article  PubMed Central  CAS  Google Scholar 

  220. Levi V, Messina G, Franzini A, Zanin L, Castelli N, Dones I. Peripheral nerve field stimulation (PNFS) as a treatment option for intractable radiation-induced facial neuropathic pain in a survivor of laryngeal cancer: a case report. W Neurosurg. 2016;91(671):e5-7.

    Google Scholar 

  221. Gibbs IC, Patil C, Gerszten PC, Adler JR, Burton SA. Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurg. 2009;64(suppl_2):A67–A72.

  222. Okada S, Okeda R. Pathology of radiation myelopathy. Neuropath. 2001;21(4):247–65.

    Article  CAS  Google Scholar 

  223. Nordal RA. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res. 2004;10(10):3342–53.

    Article  CAS  PubMed  Google Scholar 

  224. Omuro AMP, Martin-Duverneuil N, Delattre J-Y. Complications of radiotherapy to the central nervous system. Hand Clin Neurol. 2012;105:887–901.

    Article  Google Scholar 

  225. Schultheiss TE, Higgins EM, El-Mahdi AM. The latent period in clinical radiation myelopathy. Int J Radiat Oncol. 1984;10(7):1109–15.

    Article  CAS  Google Scholar 

  226. Siker ML, Bovi J, Alexander B. Spinal cord tumors. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology. Philadelphia: Elsevier; 2016. p. 521–540.e5.

  227. Shaw PJ, Bates D. Conservative treatment of delayed cerebral radiation necrosis. J Neurol Neurosurg Psych. 1984;47(12):1338–41.

    Article  CAS  Google Scholar 

  228. Liu CY, Yim BT, Wozniak AJ. Anticoagulation therapy for radiation-induced myelopathy. Ann Pharmacother. 2001;35(2):188–91.

    Article  CAS  PubMed  Google Scholar 

  229. Calabrò F, Jinkins JR. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol. 2000;10(7):1079–84.

    Article  PubMed  Google Scholar 

  230. Chamberlain MC, Eaton KD, Fink J. Radiation-induced myelopathy: treatment with bevacizumab. Arch Neurol. 2011;68(12):1608–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding

No funding or sponsorship was received for this study or publication of this article

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Disclosures

Amitabh Gulati is a consultant for SPR Therapeutics, Nalu Medical, Medtronic, AIS Healthcare, Bausch Health. Alaa Abd-Elsayed is a consultant for Medtronic, StimWave, and Avanos. Jay Karri, Laura Lachman, Alex Hanania, Anuj Marathe, Mani Singh, Nicholas Zacharias and Vwaire Orhurhu declare they have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Abd-Elsayed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karri, J., Lachman, L., Hanania, A. et al. Radiotherapy-Specific Chronic Pain Syndromes in the Cancer Population: An Evidence-Based Narrative Review. Adv Ther 38, 1425–1446 (2021). https://doi.org/10.1007/s12325-021-01640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-021-01640-x

Keywords

  • Cancer
  • Chronic pain
  • Multidisciplinary pain management
  • Radiotherapy