Skip to main content
Log in

The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

The insulin-like growth factor (IGF) system comprises ligands of IGF-I/II, IGF receptors (IGFR), IGF binding proteins (IGFBPs), and IGFBP hydrolases. The IGF system plays multiple roles during various disease development as IGFs are widely involved in cell proliferation and differentiation through regulating DNA transcription. Meanwhile, IGFBPs, which are mainly synthesized in the liver, can bind to IGFs and perform two different functions: either inhibition of IGFs by forming inactive compounds with IGF or enhancement of the function of IGFs by strengthening the IGF–IGFR interaction. Interestingly, IGFBPs may have wider functions through IGF-independent mechanisms. Studies have shown that IGFBPs play important roles in cardiovascular disease, tumor progression, fetal growth, and neuro-nutrition. In this review, we emphasize that different IGFBP family members have common or unique functions in numerous diseases; moreover, IGFBPs may serve as biomarkers for disease diagnosis and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clemmons DR. Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev. 1997;8:45–62. https://doi.org/10.1016/s1359-6101(96)00053-6.

  2. Lee PD, Giudice LC, Conover CA, Powell DR. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc Soc Exp Biol Med. 1997;216:319–57. https://doi.org/10.3181/00379727-216-44182.

    Article  CAS  PubMed  Google Scholar 

  3. Chicharro JL, Lopez-Calderon A, Hoyos J, et al. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3. Br J Sports Med. 2001;35:303–7. https://doi.org/10.1136/bjsm.35.5.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Doorn J. Insulin-like growth factor-II and bioactive proteins containing a part of the E-domain of pro-insulin-like growth factor-II. BioFactors. 2020;46:563–78. https://doi.org/10.1002/biof.1623.

  5. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505–18. https://doi.org/10.1038/nrc1387.

    Article  CAS  PubMed  Google Scholar 

  6. Neirijnck Y, Papaioannou MD, Nef S. The insulin/IGF system in mammalian sexual development and reproduction. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20184440.

  7. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107:873–7. https://doi.org/10.1002/ijc.11487.

    Article  CAS  PubMed  Google Scholar 

  8. Clemmons DR, Busby WH, Arai T, et al. Role of insulin-like growth factor binding proteins in the control of IGF actions. Prog Growth Factor Res. 1995;6:357–66. https://doi.org/10.1016/0955-2235(95)00013-5.

    Article  CAS  PubMed  Google Scholar 

  9. Ekstrom K, Salemyr J, Zachrisson I, Carlsson-Skwirut C, Ortqvist E, Bang P. Normalization of the IGF-IGFBP axis by sustained nightly insulinization in type 1 diabetes. Diabetes Care. 2007;30:1357–63. https://doi.org/10.2337/dc06-2328.

    Article  CAS  PubMed  Google Scholar 

  10. Rowlands MA, Holly JMP, Gunnell D, et al. Circulating insulin-like growth factors and IGF-binding proteins in PSA-detected prostate cancer: the large case-control study ProtecT. Cancer Res. 2012;72:503–515. https://doi.org/10.1158/0008-5472.Can-11-1601.

  11. Kiepe D, Ulinski T, Powell DR, Durham SK, Mehls O, Tönshoff B. Differential effects of insulin-like growth factor binding proteins-1, -2, -3, and -6 on cultured growth plate chondrocytes. Kidney Int. 2002;62:1591–600. https://doi.org/10.1046/j.1523-1755.2002.00603.x.

    Article  CAS  PubMed  Google Scholar 

  12. Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocrine Rev. 1999;20:761–87. https://doi.org/10.1210/edrv.20.6.0382.

    Article  CAS  Google Scholar 

  13. Wheatcroft SB, Kearney MT. IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol Metabol. 2009;20:153–62. https://doi.org/10.1016/j.tem.2009.01.002.

    Article  CAS  Google Scholar 

  14. Wallander M, Norhammar A, Malmberg K, Ohrvik J, Rydén L, Brismar K. IGF binding protein 1 predicts cardiovascular morbidity and mortality in patients with acute myocardial infarction and type 2 diabetes. Diabetes Care. 2007;30:2343–8. https://doi.org/10.2337/dc07-0825.

    Article  CAS  PubMed  Google Scholar 

  15. Ekström K, Salemyr J, Zachrisson I, Carlsson-Skwirut C, Ortqvist E, Bang P. Normalization of the IGF-IGFBP axis by sustained nightly insulinization in type 1 diabetes. Diabetes Care. 2007;30:1357–63. https://doi.org/10.2337/dc06-2328.

    Article  CAS  PubMed  Google Scholar 

  16. Ramirez VI, Miller E, Meireles CL, Gelfond J, Krummel DA, Powell TL. Adiponectin and IGFBP-1 in the development of gestational diabetes in obese mothers. BMJ Open Diabetes Res Care. 2014;2:e000010. https://doi.org/10.1136/bmjdrc-2013-000010.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Song Z, Dai X, Yu H, Luo Q, Zhang H, Wu L. Increased serum IGFBP-1 and reduced insulin resistance after Roux-en-Y gastric bypass in Chinese patients with type 2 diabetes: a 6-month follow-up. Obesity Surg. 2018;28:3165–71. https://doi.org/10.1007/s11695-018-3242-8.

    Article  Google Scholar 

  18. Leinonen ES, Salonen JT, Salonen RM, et al. Reduced IGFBP-1 is associated with thickening of the carotid wall in type 2 diabetes. Diabetes Care. 2002;25:1807–12. https://doi.org/10.2337/diacare.25.10.1807.

    Article  CAS  PubMed  Google Scholar 

  19. Chicharro JL, López-Calderon A, Hoyos J, et al. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3. Br J Sports Med. 2001;35:303–7. https://doi.org/10.1136/bjsm.35.5.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stilling F, Wallenius S, Michaëlsson K, Dalgård C, Brismar K, Wolk A. High insulin-like growth factor-binding protein-1 (IGFBP-1) is associated with low relative muscle mass in older women. Metab Clin Exp. 2017;73:36–42. https://doi.org/10.1016/j.metabol.2017.04.013.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta MB, Abu Shehab M, Nygard K, et al. IUGR is associated with marked hyperphosphorylation of decidual and maternal plasma IGFBP-1. J Clin Endocrinol Metab. 2019;104:408–22. https://doi.org/10.1210/jc.2018-00820.

    Article  PubMed  Google Scholar 

  22. Shehab MA, Biggar K, Singal SS, et al. Exposure of decidualized HIESC to low oxygen tension and leucine deprivation results in increased IGFBP-1 phosphorylation and reduced IGF-I bioactivity. Mol Cell Endocrinol. 2017;452:1–14. https://doi.org/10.1016/j.mce.2017.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiao L, Wattez JS, Lee S, et al. Knockout maternal adiponectin increases fetal growth in mice: potential role for trophoblast IGFBP-1. Diabetologia. 2016;59:2417–25. https://doi.org/10.1007/s00125-016-4061-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu YW, Chen H, Hong CQ, et al. Serum IGFBP-1 as a potential biomarker for diagnosis of early-stage upper gastrointestinal tumour. EBioMedicine. 2020;51:102566. https://doi.org/10.1016/j.ebiom.2019.11.027.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yau SW, Azar WJ, Sabin MA, Werther GA, Russo VC. IGFBP-2 - taking the lead in growth, metabolism and cancer. J Cell Commun Signal. 2015;9:125–42. https://doi.org/10.1007/s12079-015-0261-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xi G, Wai C, Rosen CJ, Clemmons DR. A peptide containing the receptor binding site of insulin-like growth factor binding protein-2 enhances bone mass in ovariectomized rats. Bone Res. 2018;6:23. https://doi.org/10.1038/s41413-018-0024-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carter S, Lemieux I, Li Z, et al. Changes in IGFBP-2 levels following a one-year lifestyle modification program are independently related to improvements in plasma apo B and LDL apo B levels. Atherosclerosis. 2019;281:89–97. https://doi.org/10.1016/j.atherosclerosis.2018.12.016.

    Article  CAS  PubMed  Google Scholar 

  28. Wittenbecher C, Ouni M, Kuxhaus O, et al. Insulin-like growth factor binding protein 2 (IGFBP-2) and the risk of developing type 2 diabetes. Diabetes. 2019;68:188–97. https://doi.org/10.2337/db18-0620.

    Article  CAS  PubMed  Google Scholar 

  29. Khan S. IGFBP-2 signaling in the brain: from brain development to higher order brain functions. Front Endocrinol. 2019;10:822. https://doi.org/10.3389/fendo.2019.00822.

    Article  Google Scholar 

  30. McGrath ER, Himali JJ, Levy D, et al. Circulating IGFBP-2: a novel biomarker for incident dementia. Ann Clin Transl Neurol. 2019;6:1659–70. https://doi.org/10.1002/acn3.50854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han S, Li Z, Master LM, Master ZW, Wu A. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway. Br J Cancer. 2014;111:1400–9. https://doi.org/10.1038/bjc.2014.435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin Y, Jiang T, Zhou K, et al. Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro Oncol. 2009;11:468–76. https://doi.org/10.1215/15228517-2008-114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muessig JM, Lichtenauer M, Wernly B, et al. Insulin like growth factor binding protein 2 (IGFBP-2) for risk prediction in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI). Int J Cardiol. 2019;277:54–9. https://doi.org/10.1016/j.ijcard.2018.09.091.

    Article  PubMed  Google Scholar 

  34. van den Beld AW, Carlson OD, Doyle ME, et al. IGFBP-2 and aging: a 20-year longitudinal study on IGFBP-2, IGF-I, BMI, insulin sensitivity and mortality in an aging population. Eur J Endocrinol. 2019;180:109–16. https://doi.org/10.1530/eje-18-0422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen X, Xi G, Maile LA, Wai C, Rosen CJ, Clemmons DR. Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosine phosphatase beta and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol Cell Biol. 2012;32:4116–30. https://doi.org/10.1128/MCB.01011-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xi G, Demambro VE, D'Costa S, et al. Estrogen stimulation of pleiotrophin enhances osteoblast differentiation and maintains bone mass in IGFBP-2 null mice. Endocrinology. 2020;161:bqz007. https://doi.org/10.1210/endocr/bqz007.

    Article  PubMed  Google Scholar 

  37. Xi G, Wai C, DeMambro V, Rosen CJ, Clemmons DR. IGFBP-2 directly stimulates osteoblast differentiation. J Bone Miner Res. 2014;29:2427–38. https://doi.org/10.1002/jbmr.2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xi G, Shen X, Rosen CJ, Clemmons DR. IRS-1 functions as a molecular scaffold to coordinate IGF-I/IGFBP-2 signaling during osteoblast differentiation. J Bone Miner Res. 2016;31:1300–14. https://doi.org/10.1002/jbmr.2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xi G, D'Costa S, Wai C, Xia SK, Cox ZC, Clemmons DR. IGFBP-2 stimulates calcium/calmodulin-dependent protein kinase kinase 2 activation leading to AMP-activated protein kinase induction which is required for osteoblast differentiation. J Cell Physiol. 2019;234:23232–42. https://doi.org/10.1002/jcp.28890.

    Article  CAS  PubMed  Google Scholar 

  40. Ho GYF, Zheng SL, Cushman M, et al. Associations of insulin and IGFBP-3 with lung cancer susceptibility in current smokers. J Natl Cancer Inst. 2016;108:djw012. https://doi.org/10.1093/jnci/djw012.

    Article  CAS  PubMed Central  Google Scholar 

  41. Kim JH, Choi DS, Lee OH, Oh SH, Lippman SM, Lee HY. Antiangiogenic antitumor activities of IGFBP-3 are mediated by IGF-independent suppression of Erk1/2 activation and Egr-1-mediated transcriptional events. Blood. 2011;118:2622–31. https://doi.org/10.1182/blood-2010-08-299784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiu N, He YF, Zhang SM, et al. Cullin7 enhances resistance to trastuzumab therapy in Her2 positive breast cancer via degrading IRS-1 and downregulating IGFBP-3 to activate the PI3K/AKT pathway. Cancer Lett. 2019;464:25–36. https://doi.org/10.1016/j.canlet.2019.08.008.

    Article  CAS  PubMed  Google Scholar 

  43. Fu T, Pappou EP, Guzzetta AA, et al. IGFBP-3 gene methylation in primary tumor predicts recurrence of stage II colorectal cancers. Ann Surg. 2016;263:337–44. https://doi.org/10.1097/sla.0000000000001204.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ho L, Stojanovski A, Whetstone H, et al. Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell. 2009;16:126–36. https://doi.org/10.1016/j.ccr.2009.05.013.

    Article  CAS  PubMed  Google Scholar 

  45. Tan VY, Biernacka KM, Dudding T, et al. Reassessing the association between circulating vitamin D and IGFBP-3: observational and mendelian randomization estimates from independent sources. Cancer Epidemiol Biomark Prevent. 2018;27:1462–71. https://doi.org/10.1158/1055-9965.Epi-18-0113.

    Article  Google Scholar 

  46. Scully T, Scott CD, Firth SM, et al. Enhancement of mammary tumour growth by IGFBP-3 involves impaired T cell accumulation. Endocrine Relat Cancer. 2018;25:111–22. https://doi.org/10.1530/erc-17-0384.

    Article  CAS  Google Scholar 

  47. de Silva HC, Lin MZ, Phillips L, Martin JL, Baxter RC. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci. 2019;76:2015–30. https://doi.org/10.1007/s00018-019-03033-4.

    Article  CAS  PubMed  Google Scholar 

  48. Sakata J, Hirosue A, Yoshida R, et al. Enhanced expression of IGFBP-3 reduces radiosensitivity and is associated with poor prognosis in oral squamous cell carcinoma. Cancers (Basel). 2020;12:494. https://doi.org/10.3390/cancers12020494.

    Article  CAS  PubMed Central  Google Scholar 

  49. Elloumi M, El Elj N, Zaouali M, et al. IGFBP-3, a sensitive marker of physical training and overtraining. Br J Sports Med. 2005;39:604–10. https://doi.org/10.1136/bjsm.2004.014183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang XY, Huang ZL, Yang JH, et al. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. J Exp Clin Cancer Res. 2016;35:46. https://doi.org/10.1186/s13046-016-0317-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He YH, Lu X, Yang LQ, Xu LY, Kong QP. Association of the insulin-like growth factor binding protein 3 (IGFBP-3) polymorphism with longevity in Chinese nonagenarians and centenarians. Aging. 2014;6:944–56. https://doi.org/10.18632/aging.100703.

    Article  Google Scholar 

  52. Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15:811–24. https://doi.org/10.1111/acel.12490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong S, Kim MM. IGFBP-3 plays an important role in senescence as an aging marker. Environ Toxicol Pharmacol. 2018;59:138–45. https://doi.org/10.1016/j.etap.2018.03.014.

    Article  CAS  PubMed  Google Scholar 

  54. Liu L, Jiang Y, Steinle JJ. Glycyrrhizin protects IGFBP-3 knockout mice from retinal damage. Cytokine. 2020;125:154856. https://doi.org/10.1016/j.cyto.2019.154856.

    Article  CAS  PubMed  Google Scholar 

  55. Titone R, Zhu M, Robertson DM. Mutual regulation between IGF-1R and IGFBP-3 in human corneal epithelial cells. J Cell Physiol. 2019;234:1426–41. https://doi.org/10.1002/jcp.26948.

    Article  CAS  PubMed  Google Scholar 

  56. Busch M, Krüger A, Gross S, et al. Relation of IGF-1 and IGFBP-3 with prevalent and incident atrial fibrillation in a population-based study. Heart Rhythm. 2019;16:1314–9. https://doi.org/10.1016/j.hrthm.2019.03.017.

    Article  PubMed  Google Scholar 

  57. Zhu W, Shiojima I, Ito Y, et al. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature. 2008;454:345–9. https://doi.org/10.1038/nature07027.

    Article  CAS  PubMed  Google Scholar 

  58. Konev AA, Kharitonov AV, Rozov FN, et al. CT-IGFBP-4 as a novel prognostic biomarker in acute heart failure. ESC Heart Fail. 2020;. https://doi.org/10.1002/ehf2.12590.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cediel G, Rueda F, Oxvig C, et al. Prognostic value of the Stanniocalcin-2/PAPP-A/IGFBP-4 axis in ST-segment elevation myocardial infarction. Cardiovasc Diabetol. 2018;17:63. https://doi.org/10.1186/s12933-018-0710-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hjortebjerg R, Tarnow L, Jorsal A, et al. IGFBP-4 Fragments as markers of cardiovascular mortality in type 1 diabetes patients with and without nephropathy. J Clin Endocrinol Metab. 2015;100:3032–40. https://doi.org/10.1210/jc.2015-2196.

    Article  CAS  PubMed  Google Scholar 

  61. Son JW, Park J, Kim YE, et al. Glia-like cells from late-passage human MSCs protect against ischemic stroke through IGFBP-4. Mol Neurobiol. 2019;56:7617–30. https://doi.org/10.1007/s12035-019-1629-8.

    Article  CAS  PubMed  Google Scholar 

  62. Mense K, Heidekorn-Dettmer J, Wirthgen E, et al. Increased concentrations of insulin-like growth factor binding protein (IGFBP)-2, IGFBP-3, and IGFBP-4 are associated with fetal mortality in pregnant cows. Front Endocrinol (Lausanne). 2018;9:310. https://doi.org/10.3389/fendo.2018.00310.

    Article  Google Scholar 

  63. Contois LW, Akalu A, Caron JM, et al. Inhibition of tumor-associated αvβ3 integrin regulates the angiogenic switch by enhancing expression of IGFBP-4 leading to reduced melanoma growth and angiogenesis in vivo. Angiogenesis. 2015;18:31–46. https://doi.org/10.1007/s10456-014-9445-2.

    Article  CAS  PubMed  Google Scholar 

  64. Kalus W, Zweckstetter M, Renner C, et al. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. EMBO J. 1998;17:6558–72. https://doi.org/10.1093/emboj/17.22.6558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salih DA, Tripathi G, Holding C, et al. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci U S A. 2004;101:4314–9. https://doi.org/10.1073/pnas.0400230101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DiPrisco B, Kumar A, Kalra B, et al. Placental proteases PAPP-A and PAPP-A2, the binding proteins they cleave (IGFBP-4 and -5), and IGF-I and IGF-II: levels in umbilical cord blood and associations with birth weight and length. Metabol Clin Exp. 2019;100:153959. https://doi.org/10.1016/j.metabol.2019.153959.

    Article  CAS  Google Scholar 

  67. Wang Y, Jia Z, Diao S, et al. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton’s jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif. 2016;49:618–27. https://doi.org/10.1111/cpr.12284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ren H, Yin P, Duan C. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. J Cell Biol. 2008;182:979–91. https://doi.org/10.1083/jcb.200712110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin SC, Wang CP, Chen YM, et al. Regulation of IGFBP-5 expression during tumourigenesis and differentiation of oral keratinocytes. J Pathol. 2002;198:317–25. https://doi.org/10.1002/path.1220.

    Article  CAS  PubMed  Google Scholar 

  70. Luther GA, Lamplot J, Chen X, et al. IGFBP5 domains exert distinct inhibitory effects on the tumorigenicity and metastasis of human osteosarcoma. Cancer Lett. 2013;336:222–30. https://doi.org/10.1016/j.canlet.2013.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in glioblastoma multiforme cells. Cell Div. 2020;15:4. https://doi.org/10.1186/s13008-020-00061-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sureshbabu A, Okajima H, Yamanaka D, et al. IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. J Cell Sci. 2012;125:1693–705. https://doi.org/10.1242/jcs.092882.

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen XX, Muhammad L, Nietert PJ, Feghali-Bostwick C. IGFBP-5 promotes fibrosis via increasing its own expression and that of other pro-fibrotic mediators. Front Endocrinol. 2018;9:601. https://doi.org/10.3389/fendo.2018.00601.

    Article  Google Scholar 

  74. Song SE, Kim YW, Kim JY, Lee DH, Kim JR, Park SY. IGFBP5 mediates high glucose-induced cardiac fibroblast activation. J Mol Endocrinol. 2013;50:291–303. https://doi.org/10.1530/JME-12-0194.

    Article  CAS  PubMed  Google Scholar 

  75. Sanada F, Taniyama Y, Muratsu J, et al. Activated factor X induces endothelial cell senescence through IGFBP-5. Sci Rep. 2016;6:35580. https://doi.org/10.1038/srep35580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Capuano AW, Wilson RS, Honer WG, et al. Brain IGFBP-5 modifies the relation of depressive symptoms to decline in cognition in older persons. J Affect Disord. 2019;250:313–8. https://doi.org/10.1016/j.jad.2019.03.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Simon CM, Rauskolb S, Gunnersen JM, et al. Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy. Acta Neuropathol. 2015;130:373–87. https://doi.org/10.1007/s00401-015-1446-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bach LA. Current ideas on the biology of IGFBP-6: more than an IGF-II inhibitor? Growth Horm IGF Res. 2016;30–31:81–6. https://doi.org/10.1016/j.ghir.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  79. Iosef C, Vilk G, Gkourasas T, et al. Insulin-like growth factor binding protein-6 (IGFBP-6) interacts with DNA-end binding protein Ku80 to regulate cell fate. Cell Signal. 2010;22:1033–43. https://doi.org/10.1016/j.cellsig.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  80. Qiu F, Gao W, Wang B. Correlation of IGFBP-6 expression with apoptosis and migration of colorectal carcinoma cells. Cancer Biomark. 2018;21:893–8. https://doi.org/10.3233/CBM-170947.

    Article  CAS  PubMed  Google Scholar 

  81. Yang Z, Bach LA. Differential effects of insulin-like growth factor binding protein-6 (IGFBP-6) on migration of two ovarian cancer cell lines. Front Endocrinol (Lausanne). 2014;5:231. https://doi.org/10.3389/fendo.2014.00231.

    Article  Google Scholar 

  82. Oliva CR, Halloran B, Hjelmeland AB, et al. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Commun Signal. 2018;16:61. https://doi.org/10.1186/s12964-018-0273-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bei Y, Huang Q, Shen J, et al. IGFBP6 regulates cell apoptosis and migration in glioma. Cell Mol Neurobiol. 2017;37:889–98. https://doi.org/10.1007/s10571-016-0426-4.

    Article  CAS  PubMed  Google Scholar 

  84. Fu P, Yang Z, Bach LA. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem. 2013;288:29890–900. https://doi.org/10.1074/jbc.M113.510826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao HM, Sheng MJ, Yu J. Expression of IGFBP-6 in a proliferative vitreoretinopathy rat model and its effects on retinal pigment epithelial cell proliferation and migration. Int J Ophthalmol. 2014;7:27–33. https://doi.org/10.3980/j.issn.2222-3959.2014.01.05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang S, Liu Y, Wu C, et al. The expression of IGFBP6 after spinal cord injury: implications for neuronal apoptosis. Neurochem Res. 2017;42:455–67. https://doi.org/10.1007/s11064-016-2092-9.

    Article  CAS  PubMed  Google Scholar 

  87. Conese M, D'Oria S, Castellani S, Trotta R, Montemurro P, Liso A. Insulin-like growth factor-6 (IGFBP-6) stimulates neutrophil oxidative burst, degranulation and chemotaxis. Inflamm Res. 2018;67:107–9. https://doi.org/10.1007/s00011-017-1107-6.

    Article  CAS  PubMed  Google Scholar 

  88. Akiel M, Guo C, Li X, et al. IGFBP7 deletion promotes hepatocellular carcinoma. Cancer Res. 2017;77:4014–25. https://doi.org/10.1158/0008-5472.CAN-16-2885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen D, Siddiq A, Emdad L, et al. Corrigendum to “Insulin-like growth factor-binding protein-7 (IGFBP7): a promising gene therapeutic for hepatocellular carcinoma (HCC)”. Mol Ther. 2015;23:1278. https://doi.org/10.1038/mt.2015.57.

  90. Chen Y, Cui T, Knosel T, Yang L, Zoller K, Petersen I. IGFBP7 is a p53 target gene inactivated in human lung cancer by DNA hypermethylation. Lung Cancer. 2011;73:38–44. https://doi.org/10.1016/j.lungcan.2010.10.015.

    Article  PubMed  Google Scholar 

  91. Benatar T, Yang W, Amemiya Y, et al. IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways. Breast Cancer Res Treat. 2012;133:563–73. https://doi.org/10.1007/s10549-011-1816-4.

    Article  CAS  PubMed  Google Scholar 

  92. Li N, Han J, Tang J, Ying Y. IGFBP-7 inhibits the differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-catenin signaling. J Cell Biochem. 2018;119:4742–50. https://doi.org/10.1002/jcb.26654.

    Article  CAS  PubMed  Google Scholar 

  93. Bolomsky A, Hose D, Schreder M, et al. Insulin like growth factor binding protein 7 (IGFBP7) expression is linked to poor prognosis but may protect from bone disease in multiple myeloma. J Hematol Oncol. 2015;8:10. https://doi.org/10.1186/s13045-014-0105-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. An W, Ben QW, Chen HT, et al. Low expression of IGFBP7 is associated with poor outcome of pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2012;19:3971–8. https://doi.org/10.1245/s10434-012-2407-2.

    Article  PubMed  Google Scholar 

  95. Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int. 2014;85:909–19. https://doi.org/10.1038/ki.2013.363.

    Article  CAS  PubMed  Google Scholar 

  96. Bai Z, Fang F, Xu Z, et al. Serum and urine FGF23 and IGFBP-7 for the prediction of acute kidney injury in critically ill children. BMC Pediatr. 2018;18:192. https://doi.org/10.1186/s12887-018-1175-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wetz AJ, Richardt EM, Wand S, et al. Quantification of urinary TIMP-2 and IGFBP-7: an adequate diagnostic test to predict acute kidney injury after cardiac surgery? Crit Care. 2015;19:3. https://doi.org/10.1186/s13054-014-0717-4.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gu HF, Gu T, Hilding A, et al. Evaluation of IGFBP-7 DNA methylation changes and serum protein variation in Swedish subjects with and without type 2 diabetes. Clin Epigenet. 2013;5:20. https://doi.org/10.1186/1868-7083-5-20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding

This study and the journal’s rapid service fee are supported by a Joint Fund for Science and Technology Cooperation across the Taiwan Straits from the National Natural Science Foundation and Fujian Province, China (Grant No. U1605226), a Science and Technology Project from Xiamen Science and Technology Bureau, Fujian Province, China (Grant No. 3502Z20184025 and 3502Z20184024).

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Authorship Contributions

G.L. and Y.W. conceived the article; F.S. wrote the manuscript; G.L., Y.H., X.X.Z., amended the manuscript. All the authors approved the submission.

Disclosures

Fei Song, Xiao-Xia Zhou, Yu Hu, Gang Li and Yan Wang have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Data Availability

All datasets generated or analyzed during this study are included in this published article/as supplementary information files.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Li or Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., Zhou, XX., Hu, Y. et al. The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 38, 885–903 (2021). https://doi.org/10.1007/s12325-020-01581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-020-01581-x

Keywords

Navigation