Negri AL. Hereditary hypophosphatemias: new genes in the bone-kidney axis. Nephrology (Carlton). 2007;12(4):317–20.
CAS
PubMed
Article
Google Scholar
Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol. 2008;23(8):1203–10.
PubMed
PubMed Central
Article
Google Scholar
Schiavi SC, Kumar R. The phosphatonin pathway: new insights in phosphate homeostasis. Kidney Int. 2004;65(1):1–14.
CAS
PubMed
Article
Google Scholar
Alon US. Clinical practice. Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr. 2011;170(5):545–54.
CAS
PubMed
Article
Google Scholar
Mejia-Gaviria N, Gil-Peña H, Coto E, Pérez-Menéndez TM, Santos F. Genetic and clinical peculiarities in a new family with hereditary hypophosphatemic rickets with hypercalciuria: a case report. Orphanet J Rare Dis. 2010;5:1.
PubMed
PubMed Central
Article
Google Scholar
Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.
CAS
PubMed
Article
Google Scholar
Phulwani P, Bergwitz C, Jaureguiberry G, Rasoulpour M, Estrada E. Hereditary hypophosphatemic rickets with hypercalciuria and nephrolithiasis-identification of a novel SLC34A3/NaPi-IIc mutation. Am J Med Genet A. 2011;155A(3):626–33.
PubMed
Article
Google Scholar
Tencza AL, Ichikawa S, Dang A, Kenagy D, McCarthy E, Econs MJ, et al. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/type IIc sodium-phosphate cotransporter: presentation as hypercalciuria and nephrolithiasis. J Clin Endocrinol Metab. 2009;94(11):4433–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sermet-Gaudelus I, Garabédian M, Dechaux M, Lenoir G, Rey J, Tieder M. Hereditary hypophosphatemic rickets with hypercalciuria: report of a new kindred. Nephron. 2001;88(1):83–6.
CAS
PubMed
Article
Google Scholar
Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312(10):611–7.
CAS
PubMed
Article
Google Scholar
Tieder M, Modai D, Shared U, Samuel R, Arie R, Halabe A, et al. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med. 1987;316(3):125–9.
CAS
PubMed
Article
Google Scholar
Tieder M, Arie R, Bab I, Maor J, Liberman UA. A new kindred with hereditary hypophosphatemic rickets with hypercalciuria: implications for correct diagnosis and treatment. Nephron. 1992;62(2):176–81.
CAS
PubMed
Article
Google Scholar
Nishiyama S, Inoue F, Matsuda I. A single case of hypophosphatemic rickets with hypercalciuria. J Pediatr Gastroenterol Nutr. 1986;5(5):826–9.
CAS
PubMed
Article
Google Scholar
Chen C, Carpenter T, Steg N, Baron R, Anast C. Hypercalciuric hypophosphatemic rickets, mineral balance, bone histomorphometry, and therapeutic implications of hypercalciuria. Pediatrics. 1989;84(2):276–80.
CAS
PubMed
Google Scholar
Navarro JF, Teruel JL, Montalbán C, Gallego N, Ortuño J. Hypercalciuria secondary to chronic hypophosphatemia. Miner Electrolyte Metab. 1994;20(5):255–8.
CAS
PubMed
Google Scholar
Santos F, Amil B, Chan JC. Síndromes hipofosfatémicos. In: García Nieto G, Santos F, editors. Nefrología pediátrica. 2nd ed. Madrid: Grupo Aula Médica; 2006. p. 161–79.
Google Scholar
Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, et al. Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab. 2007;25(6):407–13.
PubMed
Article
Google Scholar
ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8.
Article
Google Scholar
Sáez-Torres C, Rodrigo D, Grases F, García-Raja AM, Gómez C, Lumbreras J, et al. Urinary excretion of calcium, magnesium, phosphate, citrate, oxalate, and uric acid by healthy schoolchildren using a 12-h collection protocol. Pediatr Nephrol. 2014;29(7):1201–8.
PubMed
Article
Google Scholar
Jiménez R, Calderón V. Litiasis renal e hipercalciuria idiopática. Protoc Diagn Ter Pediatr. 2014;1:155–70.
Google Scholar
Yu Y, Sanderson SR, Reyes M, Sharma A, Dunbar N, Srivastava T, et al. Novel NaPi-IIc mutations causing HHRH and idiopathic hypercalciuria in several unrelated families: long-term follow-up in one kindred. Bone. 2012;50(5):1100–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cioffi M, Corradino M, Gazzerro P, Vietri MT, Di Macchia C, Contursi A, et al. Serum concentrations of intact parathyroid hormone in healthy children. Clin Chem. 2000;46(6 Pt 1):863–4.
CAS
PubMed
Article
Google Scholar
Higgins V, Truong D, White-Al Habeeb NMA, Fung AWS, Hoffman B, Adeli K. Pediatric reference intervals for 1,25-dihydroxyvitamin D using the DiaSorin LIAISON XL assay in the healthy CALIPER cohort. Clin Chem Lab Med. 2018;56(6):964–72.
CAS
PubMed
Article
Google Scholar
Mantecón L, Alonso MA, Moya V, Andrés AG, Avello N, Martínez-Morillo E, et al. Marker of vitamin D status in healthy children: free or total 25-hydroxyvitamin D? PLoS One. 2018;13(8):e0202237.
PubMed
PubMed Central
Article
Google Scholar
Stagi S, Cavalli L, Ricci S, Mola M, Marchi C, Seminara S, et al. Parathyroid hormone levels in healthy children and adolescents. Horm Res Paediatr. 2015;84(2):124–9.
CAS
PubMed
Article
Google Scholar
Ghazali S, Barratt TM. Urinary excretion of calcium and magnesium in children. Arch Dis Child. 1974;49(2):97–101.
CAS
PubMed
PubMed Central
Article
Google Scholar
Areses R, Arruebarrena D, Arriola M, Mingo T, Ugarte B, Aribieta MA. Estudio HAURTXO. Valores de referencia del citrato en plasma y orina en la edad pediátrica. Nefrología. 1994;14(3):302–7.
Google Scholar
Pak CY. Citrate and renal calculi. Miner Electrolyte Metab. 1987;13(4):257–66.
CAS
PubMed
Google Scholar
Hernández Marco R, Núñez Gómez F, Martínez Costa C, Fons Moreno J, Peris Vidal A, Brines SJ. Urinary excretion of calcium, magnesium, uric acid and oxalic acid in normal children. An Esp Pediatr. 1988;29(2):99–104.
PubMed
Google Scholar
Chen YH, Lee AJ, Chen CH, Chesney RW, Stapleton FB, Roy S 3rd. Urinary mineral excretion among normal Taiwanese children. Pediatr Nephrol. 1994;8(1):36–9.
CAS
PubMed
Article
Google Scholar
Stapleton FB, Linshaw MA, Hassanein K, Gruskin AB. Uric acid excretion in normal children. J Pediatr. 1978;92(6):911–4.
CAS
PubMed
Article
Google Scholar
Cameron MA, Sakhaee K, Moe OW. Nephrolithiasis in children. Pediatr Nephrol. 2005;20(11):1587–92.
PubMed
Article
Google Scholar
Metz MP. Determining urinary calcium/creatinine cut-offs for the paediatric population using published data. Ann Clin Biochem. 2006;43(Pt 5):398–401.
CAS
PubMed
Article
Google Scholar
Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997;131(2):252–7.
CAS
PubMed
Article
Google Scholar
Areses R, Urbieta MA, Arriola M, Arruebarrena D, Garrido A, Mingo T, et al. Estudio HAURTXO. Valores de referencia del ácido úrico en sangria y orina en la infancia. Nefrología. 1994;11(4):321–6.
Google Scholar
Hoppe B, Kemper MJ. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol. 2010;25(3):403–13.
PubMed
Article
Google Scholar
Leumann EP, Dietl A, Matasovic A. Urinary oxalate and glycolate excretion in healthy infants and children. Pediatr Nephrol. 1990;4(5):493–7.
CAS
PubMed
Article
Google Scholar
Grases F, García-Ferragut L, Costa-Bauza A, Conte A, García-Raja A. Simple test to evaluate the risk of urinary calcium stone formation. Clin Chim Acta. 1997;263(1):43–55.
CAS
PubMed
Article
Google Scholar