Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for physicians to improve detection and clinical management. A position paper from the consensus panel on familial hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2015;35:2146e57.
Google Scholar
Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 2863–913.
Google Scholar
Sjouke B, Kusters DM, Kindt I, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype phenotype relationship, and clinical outcome. Eur Heart J. 2015;36:560–5.
Article
PubMed
Google Scholar
Santos RD, Gidding SS, Hegele RA, et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 2016. (pii: S2213-8587(16)30041-9).
Sniderman AD, Tsimikas S, Fazio S. The severe hypercholesterolemia phenotype: clinical diagnosis, management, and emerging therapies. J Am Coll Cardiol. 2014;63(19):1935–47.
CAS
Article
PubMed
Google Scholar
Raal FJ, Santos RD. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis. 2012;223:262–8.
CAS
Article
PubMed
Google Scholar
Fellin R, Arca M, Zuliani G, Calandra S, Bertolini S. The history of autosomal recessive hypercholesterolemia (ARH). From clinical observations to gene identification. Gene. 2015;555(1):23–32.
CAS
Article
PubMed
Google Scholar
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.
CAS
Article
PubMed
Google Scholar
Sniderman AD, De Graaf J, Couture P, et al. Regulation of plasma LDL: the apoB paradigm. Clin Sci (Lond). 2009;118(Pt 5):333–9.
Google Scholar
Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32(2):71–7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Garuti R, Jones C, Li WP, Michaely P, et al. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J Biol Chem. 2005;280:40996–1004.
CAS
Article
PubMed
Google Scholar
Ahmad Z, Adams-Huet B, Chen C, Garg A. Low prevalence of mutations in known loci for autosomal dominant hypercholesterolemia in a multiethnic patient cohort. Circ Cardiovasc Genet. 2012;5:666–75.
CAS
Article
PubMed
PubMed Central
Google Scholar
Talmud PJ, Shah S, Whittall R, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381:1293–301.
CAS
Article
PubMed
Google Scholar
Bertolini S, Pisciotta L, Rabacchi C, Cefalù AB, et al. Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy. Atherosclerosis. 2013;227(2):342–8.
CAS
Article
PubMed
Google Scholar
Schmidt HH, Hill S, Makariou EV, Feuerstein IM, et al. Relation of cholesterol-year score to severity of calcific atherosclerosis and tissue deposition in homozygous familial hypercholesterolemia. Am J Cardiol. 1996;77(8):575–80.
CAS
Article
PubMed
Google Scholar
Widhalm K, Binder CB, Kreissl A, Aldover-Macasaet E, Fritsch M, Kroisboeck S, Geiger H. Sudden death in a 4-year-old boy: a near-complete occlusion of the coronary artery caused by an aggressive low-density lipoprotein receptor mutation (W556R) in homozygous familial hypercholesterolemia. J Pediatr. 2011;158(1):167.
Article
PubMed
Google Scholar
Marais AD, Raal FJ, Stein EA, et al. A dose-titration and comparative study of rosuvastatin and atorvastatin in patients with homozygous familial hypercholesterolaemia. Atherosclerosis. 2008;197:400–6.
CAS
Article
PubMed
Google Scholar
Raal FJ, Pilcher GJ, Panz VR, et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124:2202–7.
CAS
Article
PubMed
Google Scholar
Arca M, Zuliani G, Wilund K, et al. Autosomal recessive hypercholesterolemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet. 2002;359:841–7.
CAS
Article
PubMed
Google Scholar
Thompson GR, Barbir M, Davies D, et al. Efficacy criteria and cholesterol targets for LDL apheresis. Atherosclerosis. 2010;208(2):317–21.
CAS
Article
PubMed
Google Scholar
Sjouke B, Hovingh GK, Kastelein JJ, Stefanutti C. Homozygous autosomal dominant hypercholesterolaemia: prevalence, diagnosis, and current and future treatment perspectives. Curr Opin Lipidol. 2015;26(3):200–9.
CAS
Article
PubMed
Google Scholar
Sirtori CR, Pavanello C, Bertolini S. Microsomal transfer protein (MTP) inhibition-a novel approach to the treatment of homozygous hypercholesterolemia. Ann Med. 2014;46(7):464–74.
CAS
Article
PubMed
Google Scholar
Cuchel M, Rader DJ. Microsomal transfer protein inhibition in humans. Curr Opin Lipidol. 2013;24(3):246–50.
CAS
Article
PubMed
Google Scholar
Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–6.
CAS
Article
PubMed
Google Scholar
http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002578/human_med_001668.jsp&mid=WC0b01ac058001d124. Accessed 25 Jan 2017.
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002578/WC500148549.pdf. Accessed 25 Jan 2017.
Stefanutti C, Blom DJ, Averna MR, et al. For the Phase 3 HoFH Lomitapide Study Investigator. The lipid-lowering effects of lomitapide are unaffected by adjunctive apheresis in patients with homozygous familial hypercholesterolaemia-A post hoc analysis of a Phase 3, single-arm, open-label trial. Atherosclerosis. 2015;240:408–14.
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Lennep JR, Averna M, Alonso R. Treating homozygous familial hypercholesterolemia in a real-world setting: Experiences with lomitapide. J Clin Lipid. 2015;9(4):607–17.
Article
Google Scholar
Stefanutti C, Morozzi C, Di Giacomo S, Sovrano B, Mesce D, Grossi A. Management of homozygous familial hypercholesterolaemia in real-world clinical practice: a report of seven Italian patients treated in Rome with lomitapide and lipoprotein apheresis. J Clin Lipid. 2016;S1933–2874(15):30103-3.
Google Scholar
Shah PK, Gaudet D, Stefanutti C, Vigna GB, Du Plessis AM, Propert KJ, et al. Phase 3 HoFH Lomitapide Study investigators. Lomitapide observational worldwide evaluation registry (LOWER): one-year data. Circulation 2015; 132 suppl 3. (Abstr. 10818).
Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol. 2008;48:835–47.
Article
PubMed
Google Scholar
Castera L. Non-invasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology. 2012;142:1293–302.
Article
PubMed
Google Scholar
Colombo S, Belloli L, Buonocore M, et al. True normal liver stiffness measurement (LSM) and its determinants. Hepatology. 2009;50(4):927.
Google Scholar
McPherson S, Jonsson JR, Cowin GJ, et al. Magnetic resonance imaging and spectroscopy accurately estimate the severity of steatosis provided the stage of fibrosis is considered. J Hepatol. 2009;51:389–97.
Article
PubMed
Google Scholar