Skip to main content
Log in

Digitalisierung in der onkologischen Chirurgie

Digitalization in surgical oncology

  • Fokus
  • Published:
Forum Aims and scope

Zusammenfassung

Hintergrund

Die digitale Transformation des Gesundheitswesens wird unseren Berufszweig wesentlich verändern und schickt sich an, die onkologische Chirurgie zu revolutionieren.

Ziel der Arbeit

Die vorliegende Arbeit ist bemüht, eine neutrale Übersicht über die zentral betroffenen Bereiche und die hier bereits umgesetzten und in Zukunft zu erwartenden Veränderungen zu geben.

Material und Methode

Der Übersichtsbeitrag berücksichtigt die aktuelle Literatur, Expertendiskussionen und Kongressinhalte. Der Fokus liegt hierbei auf der Indikationsstellung und der operativen Versorgung, wohingegen allgemeine Aspekte nur kurz abgehandelt werden.

Ergebnisse

Digitalisierung bedeutet primär eine umfassende Bereitstellung von Daten, die im Rahmen des Behandlungsprozesses kontinuierlich und strukturiert ergänzt werden. Diese erlauben eine fundierte Entscheidungsunterstützung und die Einbindung assistierender Funktionen. Insbesondere im chirurgischen Operationssaal ergeben sich potente Werkzeuge der Präzisionsmedizin.

Schlussfolgerung

Die Digitalisierung der onkologischen Chirurgie bietet zahlreiche Ansätze, die Behandlung unserer Patienten zu verbessern. Eine aktive, aber auch kritische Begleitung ist gefordert, der Patient muss hierbei im Fokus der Bemühungen stehen.

Abstract

Background

The digital transformation of the healthcare system will significantly change our profession and is about to revolutionize surgical oncology.

Objective

The present work aims to give a neutral overview of central aspects of this process and of changes that have already been made or are to be expected in the near future.

Materials and methods

This review article takes into account the current literature, expert discussions, and congress contents. The focus is laid on the indication process and on operative care, whereas general aspects are only dealt with in an overview.

Results

Digitalization in surgical oncology primarily means the comprehensive provision of data, which is continuously supplemented along the treatment process in a structured manner. The available knowledge will allow for well-founded decision support and the integration of assisting functions in all areas. For the surgical operating theatre in particular, it will provide effective tools for precision medicine.

Conclusion

The digitalization of oncological surgery offers numerous approaches to improve the treatment of our patients. Active but also critical support is required; the patient must be the focus of efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Büst R (2013) Daten sind das neue Öl. Wirtsch Inform Manag 5(2):40–46

    Google Scholar 

  2. Müller-Mielitz S (2018) Digitalisierung von Papier: Vorteile für die Prozesse. In: Digitale Transformation von Dienstleistungen im Gesundheitswesen IV. Springer, Berlin, Heidelberg, New York, S 257–275

    Google Scholar 

  3. Caumanns J (2019) Zur Diskussion: Stand der Digitalisierung im deutschen Gesundheitswesen. Z Evid Fortbild Qual Gesundhwes 143:22–29

    PubMed  Google Scholar 

  4. Klauber J, Geraedts M, Friedrich J, Wasem J (2019) Krankenhaus-Report 2019: Das digitale Krankenhaus. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  5. Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary perspectives on complex systems. Springer, Berlin, Heidelberg, New York, S 85–113

    Google Scholar 

  6. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, Jörnsten R, Lee EJ, Li X, Lilja S (2020) Digital twins to personalize medicine. Genome Med 12(1):1–4

    Google Scholar 

  7. Vogel T, Kohn N, Ostler D, Marahrens N, Samm N, Jell A, Kranzfelder M, Wilhelm D, Friess H, Feußner H (2019) Modellgestützte Therapie in der Chirurgie. Chirurg 90(6):470–477

    CAS  PubMed  Google Scholar 

  8. Kleemann M, Hildebrand P, Birth M, Bruch H (2006) Laparoscopic ultrasound navigation in liver surgery: technical aspects and accuracy. Surg Endosc 20(5):726–729

    CAS  PubMed  Google Scholar 

  9. Sharma S, Kansal N, Rattan M (2018) Implementation and analysis of SVR based machine learning approach for real-time modelling of tissue deformation. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 2018 IEEE, Piscataway Township, S 404–407

    Google Scholar 

  10. Aslam A, Ansari M (2019) Depth-map generation using pixel matching in stereoscopic pair of images. Arxiv Prepr Arxiv 2019:190203471

    Google Scholar 

  11. Kho E, De Boer LL, Van de Vijver KK, Van Duijnhoven F, Peeters M‑JTV, Sterenborg HJ, Ruers TJ (2019) Hyperspectral imaging for resection margin assessment during cancer surgery. Clin Cancer Res 25(12):3572–3580

    PubMed  Google Scholar 

  12. Jansen-Winkeln B, Holfert N, Köhler H, Moulla Y, Takoh J, Rabe S, Mehdorn M, Barberio M, Chalopin C, Neumuth T (2019) Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI). Int J Colorectal Dis 34(4):731–739

    PubMed  Google Scholar 

  13. Luke GP, Emelianov SY (2015) Label-free detection of lymph node metastases with US-guided functional photoacoustic imaging. Radiology 277(2):435–442

    PubMed  PubMed Central  Google Scholar 

  14. Mascagni P, Longo F, Barberio M, Seeliger B, Agnus V, Saccomandi P, Hostettler A, Marescaux J, Diana M (2018) New intraoperative imaging technologies: innovating the surgeon’s eye toward surgical precision. J Surg Oncol 118(2):265–282

    PubMed  Google Scholar 

  15. Zhu X, Nemoto D, Wang Y, Li Q, Aizawa M, Utano K, Isohata N, Endo S, Hewett DG, Togashi K (2019) Tu1943 A machine-learning algorithmcan detect diminutive colorectal polyps: a reading test comparing recognition with human endoscopists. Gastrointest Endosc 89(6):AB625

    Google Scholar 

  16. Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, Lenane P, Moloney FJ, Yazdabadi A (2020) Artificial intelligence in dermatology—where we are and the way to the future: a review. Am J Clin Dermatol 21(1):41–47

    PubMed  Google Scholar 

  17. Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, De Jong JS, Arts HJ, Van Der Zee AG (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor‑α targeting: first in-human results. Nat Med 17(10):1315–1319

    PubMed  Google Scholar 

  18. Wilhelm D, Vogel T, Ostler D, Marahrens N, Kohn N, Koller S, Friess H, Kranzfelder M (2018) Enhanced visualization: from intraoperative tissue differentiation to augmented reality. Visc Med 34(1):52–59

    PubMed  PubMed Central  Google Scholar 

  19. Basta YL, Bolle S, Fockens P, Tytgat KM (2017) The value of multidisciplinary team meetings for patients with gastrointestinal malignancies: a systematic review. Ann Surg Oncol 24(9):2669–2678

    PubMed  PubMed Central  Google Scholar 

  20. Walsh S, de Jong EE, van Timmeren JE, Ibrahim A, Compter I, Peerlings J, Sanduleanu S, Refaee T, Keek S, Larue RT (2019) Decision support systems in oncology. JCO Clin Cancer Inform 3:1–9

    PubMed  Google Scholar 

  21. Steele SR, Bilchik A, Johnson EK, Nissan A, Peoples GE, Eberhardt JS, Kalina P, Petersen B, Brücher B, Protic M (2014) Time-dependent estimates of recurrence and survival in colon cancer: clinical decision support system tool development for adjuvant therapy and oncological outcome assessment. Am Surg 80(5):441–453

    PubMed  Google Scholar 

  22. Ichimasa K, Kudo S‑E, Mori Y, Misawa M, Matsudaira S, Kouyama Y, Baba T, Hidaka E, Wakamura K, Hayashi T (2018) Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy 50(03):230–240

    PubMed  Google Scholar 

  23. Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, Rashidi P, Upchurch GR, Bihorac A (2020) Artificial intelligence and surgical decision-making. JAMA Surg 155(2):148–158

    PubMed  Google Scholar 

  24. Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown SH (2011) Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 306(8):848–855

    CAS  PubMed  Google Scholar 

  25. Gordon L, Grantcharov T, Rudzicz F (2019) Explainable artificial intelligence for safe Intraoperative decision support. JAMA Surg 154(11):1064–1065

    PubMed  Google Scholar 

  26. Ebadi A, Tighe PJ, Zhang L, Rashidi P (2017) DisTeam: a decision support tool for surgical team selection. Artif Intell Med 76:16–26

    PubMed  PubMed Central  Google Scholar 

  27. Sammour T, Cohen L, Karunatillake A, Lewis M, Lawrence M, Hunter A, Moore J, Thomas M (2017) Validation of an online risk calculator for the prediction of anastomotic leak after colon cancer surgery and preliminary exploration of artificial intelligence-based analytics. Tech Coloproctol 21(11):869–877

    CAS  PubMed  Google Scholar 

  28. Maubert A, Birtwisle L, Bernard J, Benizri E, Bereder J (2019) Can machine learning predict resecability of a peritoneal carcinomatosis? Surg Oncol 29:120–125

    CAS  PubMed  Google Scholar 

  29. Kranzfelder M, Schneider A, Fiolka A, Koller S, Reiser S, Vogel T, Wilhelm D, Feussner H (2014) Reliability of sensor-based real-time workflow recognition in laparoscopic cholecystectomy. Int J CARS 9(6):941–948

    Google Scholar 

  30. Kasparick M, Schmitz M, Andersen B, Rockstroh M, Franke S, Schlichting S, Golatowski F, Timmermann D (2018) OR. NET: a service-oriented architecture for safe and dynamic medical device interoperability. Biomed Eng 63(1):11–30

    Google Scholar 

  31. Yengera G, Mutter D, Marescaux J, Padoy N (2018) Less is more: surgical phase recognition with less annotations through self-supervised pre-training of CNN-LSTM networks. Arxiv Prepr Arxiv 2018:180508569

    Google Scholar 

  32. Kitaguchi D, Takeshita N, Matsuzaki H, Takano H, Owada Y, Enomoto T, Oda T, Miura H, Yamanashi T, Watanabe M (2019) Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg Endosc 34(11):4924–4931. https://doi.org/10.1007/s00464-019-07281-0

    Article  PubMed  Google Scholar 

  33. Egberts J‑H, Biebl M, Perez D, Mees S, Grimminger P, Müller-Stich B, Stein H, Fuchs H, Bruns C, Hackert T (2019) Robot-assisted oesophagectomy: recommendations towards a standardised Ivor Lewis procedure. J Gastrointest Surg 23(7):1485–1492

    PubMed  Google Scholar 

  34. Miskovic D, Ahmed J, Bissett-Amess R, Gómez Ruiz M, Luca F, Jayne D, Figueiredo N, Heald R, Spinoglio G, Parvaiz A (2019) European consensus on the standardization of robotic total mesorectal excision for rectal cancer. Colorectal Dis 21(3):270–276

    CAS  PubMed  Google Scholar 

  35. Qiu H, Yu D, Ye S, Shan R, Ai J, Shi J (2020) Long-term oncological outcomes in robotic versus laparoscopic approach for rectal cancer: a systematic review and meta-analysis. Int J Surg 80:225–230. https://doi.org/10.1016/j.ijsu.2020.03.009

    Article  PubMed  Google Scholar 

  36. Hoshino N, Murakami K, Hida K, Hisamori S, Tsunoda S, Obama K, Sakai Y (2020) Robotic versus laparoscopic surgery for gastric cancer: an overview of systematic reviews with quality assessment of current evidence. Updates Surg 72(3):573–582. https://doi.org/10.1007/s13304-020-00793-8

    Article  PubMed  Google Scholar 

  37. Rodriguez JGZ, Zihni AM, Ohu I, Cavallo JA, Ray S, Cho S, Awad MM (2019) Ergonomic analysis of laparoscopic and robotic surgical task performance at various experience levels. Surg Endosc 33(6):1938–1943

    Google Scholar 

  38. Petz W, Ribero D, Bertani E, Borin S, Formisano G, Esposito S, Spinoglio G, Bianchi P (2017) Suprapubic approach for robotic complete mesocolic excision in right colectomy: oncologic safety and short-term outcomes of an original technique. Eur J Surg Oncol 43(11):2060–2066

    CAS  PubMed  Google Scholar 

  39. van der Sluis P, Egberts J‑H, Stein H, Sallum R, van Hillegersberg R, Grimminger PP (2020) Transcervical (SP) and Transhiatal DaVinci robotic esophagectomy: a cadaveric study. Thorac Cardiovasc Surg. https://doi.org/10.1055/s-0040-1716323

    Article  PubMed  Google Scholar 

  40. Völkel V, Draeger T, Gerken M, Klinkhammer-Schalke M, Fürst A (2018) Long-term oncologic outcomes after laparoscopic vs. open colon cancer resection: a high-quality population-based analysis in a Southern German district. Surg Endosc 32(10):4138–4147

    PubMed  PubMed Central  Google Scholar 

  41. Tan J‑T, Zhong J‑H, Yang Y, Mao N‑Q, Liu D‑S, Huang D‑M, Zhao Y‑X, Zuo C‑T (2016) Comparison of postoperative immune function in patients with thoracic esophageal cancer after video-assisted thoracoscopic surgery or conventional open esophagectomy. Int J Surg 30:155–160

    PubMed  Google Scholar 

  42. Lee L, Wong-Chong N, Kelly JJ, Nassif GJ, Albert MR, Monson JR (2019) Minimally invasive surgery for stage III colon adenocarcinoma is associated with less delay to initiation of adjuvant systemic therapy and improved survival. Surg Endosc 33(2):460–470

    PubMed  Google Scholar 

  43. de’Angelis N, Lizzi V, Azoulay D, Brunetti F (2016) Robotic versus laparoscopic right colectomy for colon cancer: analysis of the initial simultaneous learning curve of a surgical fellow. J Laparoendosc Adv Surg Tech A 26(11):882–892

    PubMed  Google Scholar 

  44. Raison N, Ahmed K, Fossati N, Buffi N, Mottrie A, Dasgupta P, Van Der Poel H (2017) Competency based training in robotic surgery: benchmark scores for virtual reality robotic simulation. BJU Int 119(5):804–811

    PubMed  Google Scholar 

  45. Shin C, Ferguson PW, Pedram SA, Ma J, Dutson EP, Rosen J (2019) Autonomous tissue manipulation via surgical robot using learning based model predictive control. 2019 International Conference on Robotics and Automation (ICRA), 2019 IEEE, Piscataway Township, S 3875–3881

    Google Scholar 

  46. Bareinboim E, Pearl J (2016) Causal inference and the data-fusion problem. Proc Natl Acad Sci USA 113(27):7345–7352

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691–696

    PubMed  Google Scholar 

  48. Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, Fallert J, Feussner H, Giannarou S, Mascagni P (2020) Surgical data science—From concepts to clinical translation. Arxiv Prepr Arxiv 2020:201102284

    Google Scholar 

  49. Vercauteren T, Unberath M, Padoy N, Navab N (2019) Cai4cai: the rise of contextual artificial intelligence in computer-assisted interventions. Proc IEEE Inst Electr Electron Eng 108(1):198–214

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wilhelm.

Ethics declarations

Interessenkonflikt

D. Wilhelm, M. Berlet, H. Feussner und D. Ostler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilhelm, D., Berlet, M., Feussner, H. et al. Digitalisierung in der onkologischen Chirurgie. Forum 36, 22–28 (2021). https://doi.org/10.1007/s12312-020-00879-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12312-020-00879-9

Schlüsselwörter

Keywords

Navigation