Skip to main content
Log in

Preterm Birth Alters the Regional Development and Structural Covariance of Cerebellum at Term-Equivalent Age

  • RESEARCH
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Preterm birth is associated with increased risk for a spectrum of neurodevelopmental disabilities. The cerebellum is implicated in a wide range of cognitive functions extending beyond sensorimotor control and plays an increasingly recognized role in brain development. Morphometric studies based on volume analyses have revealed impaired cerebellar development in preterm infants. However, the structural covariance between the cerebellum and cerebral cortex has not been studied during the neonatal period, and the extent to which structural covariance is affected by preterm birth remains unknown. In this study, using the structural MR images of 52 preterm infants scanned at term-equivalent age and 312 full-term controls from the Developing Human Connectome Project, we compared volumetric growth, local cerebellum shape development and cerebello-cerebral structural covariance between the two groups. We found that although there was no significant difference in the overall volume measurements between preterm and full-term infants, the shape measurements were different. Compared with the control infants, preterm infants had significantly larger thickness in the vermis and lower thickness in the lateral portions of the bilateral cerebral hemispheres. The structural covariance between the cerebellum and frontal and parietal lobes was significantly greater in preterm infants than in full-term controls. The findings in this study suggested that cerebellar development and cerebello-cerebral structural covariance may be affected by premature birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data used in this study was acquired from the second release of the developing Human Connectome Project (dHCP, http://www.developingconnectome.org/).

References

  1. Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, Okwaraji YB, Mahanani WR, Johansson EW, Lavin T, Fernandez DE, Domínguez GG, de Costa A, Cresswell JA, Krasevec J, Lawn JE, Blencowe H, Requejo J, Moran AC. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–71.

    Article  PubMed  Google Scholar 

  2. Cameron KL, FitzGerald TL, McGinley JL, Allison K, Cheong JLY, Spittle AJ. Motor outcomes of children born extremely preterm; from early childhood to adolescence. Semin Perinatol. 2021;45(8):151481.

    Article  PubMed  Google Scholar 

  3. Vandormael C, Schoenhals L, Hüppi PS, Filippa M, Borradori TC. Language in preterm born children: atypical development and effects of early interventions on neuroplasticity. Neural Plast. 2019;2019:6873270.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pascoe L, Burnett AC, Anderson PJ. Cognitive and academic outcomes of children born extremely preterm. Semin Perinatol. 2021;45(8):151480.

    Article  PubMed  Google Scholar 

  5. Kim SY, Kim E-K, Song H, Cheon J-E, Kim BN, Kim H-S, Shin SH. Association of brain microstructure and functional connectivity with cognitive outcomes and postnatal growth among early school-aged children born with extremely low birth weight. JAMA Netw Open. 2023;6(3):e230198.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. The Cerebellum. 2019;19(1):1–5.

    Article  Google Scholar 

  7. Jacobi H, Faber J, Timmann D, Klockgether T. Update cerebellum and cognition. J Neurol. 2021;268(10):3921–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. King M. The big role of the ‘little brain’: exploring the developing cerebellum and its role in cognition. Curr Opin Behav Sci. 2023;54:101301.

    Article  Google Scholar 

  9. ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250(9):1025–36.

    Article  PubMed  Google Scholar 

  10. Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci. 2019;20(5):298–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Volpe JJ. Commentary — Cerebellar underdevelopment in the very preterm infant: Important and underestimated source of cognitive deficits. J Neonatal-Perinatal Med. 2021;14(4):451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poretti A, Boltshauser E, Huisman TA. Prenatal cerebellar disruptions: neuroimaging spectrum of findings in correlation with likely mechanisms and etiologies of injury. Neuroimaging Clin N Am. 2016;26(3):359–72.

    Article  PubMed  Google Scholar 

  14. Matthews LG, Inder TE, Pascoe L, Kapur K, Lee KJ, Monson BB, Doyle LW, Thompson DK, Anderson PJ. Longitudinal preterm cerebellar volume: perinatal and neurodevelopmental outcome associations. Cerebellum. 2018;17(5):610–27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee W, Al-Dossary H, Raybaud C, Young JM, Morgan BR, Whyte HE, Sled JG, Taylor MJ, Shroff MM. Longitudinal cerebellar growth following very preterm birth. J Magn Reson Imaging. 2016;43(6):1462–73.

    Article  PubMed  Google Scholar 

  16. Xu F, Ge X, Shi Y, Zhang Z, Tang Y, Lin X, Teng G, Zang F, Gao N, Liu H, Toga AW, Liu S. Morphometric development of the human fetal cerebellum during the early second trimester. Neuroimage. 2020;207:116372.

    Article  CAS  PubMed  Google Scholar 

  17. Ge X, Zheng Y, Qiao Y, Pan N, Simon JP, Lee M, Jiang W, Kim H, Shi Y, Liu M. Hippocampal asymmetry of regional development and structural covariance in preterm neonates. Cereb Cortex. 2022;32(19):4271–83.

    Article  PubMed  Google Scholar 

  18. Lynch KM, Shi Y, Toga AW, Clark KA. Hippocampal shape maturation in childhood and adolescence. Cereb Cortex. 2019;29(9):3651–65.

    Article  PubMed  Google Scholar 

  19. Kim H, Gano D, Ho ML, Guo XM, Unzueta A, Hess C, Ferriero DM, Xu D, Barkovich AJ. Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury. Hum Brain Mapp. 2016;37(2):678–88.

    Article  PubMed  Google Scholar 

  20. Wu Y, Stoodley C, Brossard-Racine M, Kapse K, Vezina G, Murnick J, du Plessis AJ, Limperopoulos C. Altered local cerebellar and brainstem development in preterm infants. Neuroimage. 2020;213:116702.

    Article  PubMed  Google Scholar 

  21. Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal transform or multiple functionality? understanding the contribution of the human cerebellum across task domains. Neuron. 2019;102(5):918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Batalle D, Hughes EJ, Zhang H, Tournier JD, Tusor N, Aljabar P, Wali L, Alexander DC, Hajnal JV, Nosarti C, Edwards AD, Counsell SJ. Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage. 2017;149:379–92.

    Article  PubMed  Google Scholar 

  23. Herzmann CS, Snyder AZ, Kenley JK, Rogers CE, Shimony JS, Smyser CD. Cerebellar functional connectivity in term- and very preterm-born infants. Cereb Cortex. 2018;29(3):1174–84.

    Article  PubMed Central  Google Scholar 

  24. Evans AC. Networks of anatomical covariance. Neuroimage. 2013;80:489–504.

    Article  CAS  PubMed  Google Scholar 

  25. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J. The convergence of maturational change and structural covariance in human cortical networks. J Neurosci. 2013;33(7):2889–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci. 2013;14(5):322–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morimoto C, Nakamura Y, Kuwabara H, Abe O, Kasai K, Yamasue H, Koike S. Unique morphometric features of the cerebellum and cerebellocerebral structural correlation between autism spectrum disorder and schizophrenia. Biol Psychiatry Glob Open Sci. 2021;1(3):219–28.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moberget T, Doan NT, Alnæs D, Kaufmann T, Córdova-Palomera A, Lagerberg TV, Diedrichsen J, Schwarz E, Zink M, Eisenacher S, Kirsch P, Jönsson EG, Fatouros-Bergman H, Flyckt L, Pergola G, Quarto T, Bertolino A, Barch D, Meyer-Lindenberg A, Agartz I, Andreassen OA, Westlye LT. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry. 2017;23(6):1512–20.

    Article  PubMed  Google Scholar 

  29. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, Robertson RL, Moore M, Akins P, Volpe JJ, du Plessis AJ. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.

    Article  PubMed  Google Scholar 

  30. Limperopoulos C, Chilingaryan G, Guizard N, Robertson RL, du Plessis AJ. Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr Res. 2010;68(2):145–50.

    Article  PubMed  Google Scholar 

  31. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex. 2014;24(3):728–36.

    Article  PubMed  Google Scholar 

  32. Hughes EJ, Winchman T, Padormo F, Teixeira R, Wurie J, Sharma M, Fox M, Hutter J, Cordero-Grande L, Price AN, Allsop J, Bueno-Conde J, Tusor N, Arichi T, Edwards AD, Rutherford MA, Counsell SJ, Hajnal JV. A dedicated neonatal brain imaging system. Magn Reson Med. 2017;78(2):794–804.

    Article  CAS  PubMed  Google Scholar 

  33. Cordero-Grande L, Hughes EJ, Hutter J, Price AN, Hajnal JV. Three-dimensional motion corrected sensitivity encoding reconstruction for multi-shot multi-slice MRI: application to neonatal brain imaging. Magn Reson Med. 2018;79(3):1365–76.

    Article  PubMed  Google Scholar 

  34. Kuklisova-Murgasova M, Quaghebeur G, Rutherford MA, Hajnal JV, Schnabel JA. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Anal. 2012;16(8):1550–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira R, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage. 2018;173:88–112.

    Article  PubMed  Google Scholar 

  36. Makropoulos A, Aljabar P, Wright R, Huning B, Merchant N, Arichi T, Tusor N, Hajnal JV, Edwards AD, Counsell SJ, Rueckert D. Regional growth and atlasing of the developing human brain. Neuroimage. 2016;125:456–78.

    Article  PubMed  Google Scholar 

  37. Schuh A, Makropoulos A, Wright R, Robinson EC, Tusor N, Steinweg J, Hughes E, Grande LC, Price A, Hutter J, Hajnal JV, Rueckert D. A deformable model for the reconstruction of the neonatal cortex. IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017. pp. 800–3.

  38. Bozek J, Makropoulos A, Schuh A, Fitzgibbon S, Wright R, Glasser MF, Coalson TS, O’Muircheartaigh J, Hutter J, Price AN, Cordero-Grande L, Teixeira RPAG, Hughes E, Tusor N, Baruteau KP, Rutherford MA, Edwards AD, Hajnal JV, Smith SM, Rueckert D, Jenkinson M, Robinson EC. Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project. Neuroimage. 2018;179:11–29.

    Article  PubMed  Google Scholar 

  39. Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC, Harms MP, Smith SM, Van Essen DC, Jenkinson M. MSM: a new flexible framework for multimodal surface matching. Neuroimage. 2014;100:414–26.

    Article  PubMed  Google Scholar 

  40. Shi Y, Lai R, Morra JH, Dinov I, Thompson PM, Toga AW. Robust surface reconstruction via Laplace-Beltrami eigen-projection and boundary deformation. IEEE Trans Med Imaging. 2010;29(12):2009–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shi Y, Lai R, Wang DJ, Pelletier D, Mohr D, Sicotte N, Toga AW. Metric optimization for surface analysis in the Laplace-Beltrami embedding space. IEEE Trans Med Imaging. 2014;33(7):1447–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shi Y, Morra JH, Thompson PM, Toga AW. Inverse-consistent surface mapping with Laplace-Beltrami eigen-features. International Conference on Information Processing in Medical Imaging. Springer; 2009. pp. 467–78.

  43. Wee CY, Yap PT, Shen D. Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp. 2012;34(12):3411–25.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Bernhardt B, Bolte S, Busatto GF, Calderoni S, Calvo R, Daly E, Deruelle C, Duan M, Duran FLS, Durston S, Ecker C, Ehrlich S, Fair D, Fedor J, Fitzgerald J, Floris DL, Franke B, Freitag CM, Gallagher L, Glahn DC, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, King JA, Lazaro L, Luna B, McGrath J, Medland SE, Muratori F, Murphy DGM, Neufeld J, O’Hearn K, Oranje B, Parellada M, Pariente JC, Postema MC, Remnelius KL, Retico A, Rosa PGP, Rubia K, Shook D, Tammimies K, Taylor MJ, Tosetti M, Wallace GL, Zhou F, Thompson PM, Fisher SE, Buitelaar JK, Francks C. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry. 2022;27(4):2114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brossard-Racine M, McCarter R, Murnick J, Tinkleman L, Vezina G, Limperopoulos C. Early extra-uterine exposure alters regional cerebellar growth in infants born preterm. NeuroImage: Clinical. 2019;21:101646.

  46. Andescavage NN, du Plessis A, McCarter R, Serag A, Evangelou I, Vezina G, Robertson R, Limperopoulos C. Complex trajectories of brain development in the healthy human fetus. Cereb Cortex. 2017;27(11):5274–83.

    PubMed  Google Scholar 

  47. Elnakib A, Soliman A, Nitzken M, Casanova M, Gimel’farb G, El-Baz A. Magnetic resonance imaging findings for dyslexia: a review. J Biomed Nanotechnol. 2014;10:2778–805.

    Article  CAS  PubMed  Google Scholar 

  48. Hodge SM, Makris N, Kennedy DN, Caviness VS, Howard J, McGrath L, Steele S, Frazier JA, Tager-Flusberg H, Harris GJ. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2009;40(3):300–16.

    Article  Google Scholar 

  49. Cherbuin N, Réglade-Meslin C, Kumar R, Sachdev P, Anstey KJ. Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: the PATH through life study. Front Psychiatry. 2010;1:11.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sancak S, Gursoy T, Imamoglu EY, Karatekin G, Ovali F. Effect of prematurity on cerebellar growth. J Child Neurol. 2016;31(2):138–44.

    Article  PubMed  Google Scholar 

  51. Brossard-Racine M, Poretti A, Murnick J, Bouyssi-Kobar M, McCarter R, du Plessis AJ, Limperopoulos C. Cerebellar microstructural organization is altered by complications of premature birth: a case-control study. J Pediatr. 2017;182:28-33.e1.

    Article  PubMed  Google Scholar 

  52. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Becker EBE, Stoodley CJ. Autism spectrum disorder and the cerebellum. Neurobiol Autism. 2013:1–34.

  55. Butts T, Green MJ, Wingate RJ. Development of the cerebellum: simple steps to make a “little brain.” Development. 2014;141(21):4031–41.

    Article  CAS  PubMed  Google Scholar 

  56. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Allin MPG, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. NeuroReport. 2005;16(16):1821–4.

    Article  PubMed  Google Scholar 

  58. Kim SY, Liu M, Hong S-J, Toga AW, Barkovich AJ, Xu D, Kim H. Disruption and compensation of sulcation-based covariance networks in neonatal brain growth after perinatal injury. Cereb Cortex. 2020;30(12):6238–53.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L. Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage. 2005;27(4):753–70.

    Article  PubMed  Google Scholar 

  60. Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83.

    Article  CAS  PubMed  Google Scholar 

  61. Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289(1):53–73.

    Article  CAS  PubMed  Google Scholar 

  62. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.

    Article  PubMed  Google Scholar 

  64. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. Neuroimage. 2005;28(1):39–48.

    Article  PubMed  Google Scholar 

  65. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123(Pt 4):836–44.

    Article  PubMed  Google Scholar 

  66. Wang X, Xia J, Wang W, Lu J, Liu Q, Fan J, Soondrum T, Yu Q, Tan C, Zhu X. Disrupted functional connectivity of the cerebellum with default mode and frontoparietal networks in young adults with major depressive disorder. Psychiatry Res. 2023;324:115192.

    Article  PubMed  Google Scholar 

  67. Lundequist A, Böhm B, Lagercrantz H, Forssberg H, Smedler AC. Cognitive outcome varies in adolescents born preterm, depending on gestational age, intrauterine growth and neonatal complications. Acta Paediatr. 2015;104(3):292–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Developing Human Connectome Project. The dHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456.

Funding

This study was supported by the Natural Science Foundation of Shandong Province (No. ZR2021QH052) and the National Natural Science Foundation of China (No. 31771328).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.L., Y.T.; Formal analysis: F.X., Y.W.; Investigation: F.X., W.W.; Visualization: F.X., W.L.; Writing—original draft preparation: F.X., Y.W., W.W., W.L.; Writing—review and editing: F.X., Y.T.; Funding acquisition: F.X., S.L.; Supervision: S.L., Y.T..

Corresponding author

Correspondence to Shuwei Liu.

Ethics declarations

Ethical Approval

Data used in this study was acquired from the developing Human Connectome Project. This project was approved by the National Research Ethics Committee; REC: 14/Lo/1169), and written informed consent was obtained from all participating families before imaging.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, Y., Wang, W. et al. Preterm Birth Alters the Regional Development and Structural Covariance of Cerebellum at Term-Equivalent Age. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01691-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01691-0

Keywords

Navigation