Skip to main content
Log in

Impact of Repetitive Transcranial Magnetic Stimulation to the Cerebellum on Performance of a Ballistic Targeting Movement

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) of the cerebellum on changes in motor performance during a series of repetitive ballistic-targeting tasks. Twenty-two healthy young adults (n = 12 in the active-rTMS group and n = 10 in the sham rTMS group) participated in this study. The participants sat on a chair in front of a monitor and fixed their right forearms to a manipulandum. They manipulated the handle with the flexion/extension of the wrist to move the bar on the monitor. Immediately after a beep sound was played, the participant moved the bar as quickly as possible to the target line. After the first 10 repetitions of the ballistic-targeting task, active or sham rTMS (1 Hz, 900 pulses) was applied to the right cerebellum. Subsequently, five sets of 100 repetitions of this task were conducted. Participants in the sham rTMS group showed improved reaction time, movement time, maximum velocity of movement, and targeting error after repetition. However, improvements were inhibited in the active-rTMS group. Low-frequency cerebellar rTMS may disrupt motor learning during repetitive ballistic-targeting tasks. This supports the hypothesis that the cerebellum contributes to motor learning and motor-error correction in ballistic-targeting movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87. https://doi.org/10.1007/s12311-011-0331-9.

  2. Spampinato DA, Block HJ, Celnik PA. Cerebellar-M1 Connectivity changes associated with motor learning are somatotopic specific. J Neurosci. 2017;37:2377–86. https://doi.org/10.1523/JNEUROSCI.2511-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manto M, Gandini J, Feil K, Strupp M. Cerebellar ataxias: an update. Curr Opin Neurol. 2020;33:150–60. https://doi.org/10.1097/WCO.0000000000000774.

    Article  PubMed  Google Scholar 

  4. Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74. https://doi.org/10.1093/brain/119.2.661.

    Article  PubMed  Google Scholar 

  5. Hallett M, Berardelli A, Matheson J, Rothwell J, Marsden CD. Physiological analysis of simple rapid movements in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1991;54:124–33. https://doi.org/10.1136/jnnp.54.2.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lo YL, Fook-Chong S, Chan LL, Ong WY. Cerebellar control of motor activation and cancellation in humans: an electrophysiological study. Cerebellum. 2009;8:302–11. https://doi.org/10.1007/s12311-009-0095-7.

    Article  CAS  PubMed  Google Scholar 

  7. Irlbacher K, Voss M, Meyer BU, Rothwell JC. Influence of ipsilateral transcranial magnetic stimulation on the triphasic EMG pattern accompanying fast ballistic movements in humans. J Physiol. 2006;574:917–28. https://doi.org/10.1113/jphysiol.2006.108563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Honda T, Mitoma H, Yoshida H, Bando K, Terashi H, Taguchi T, Miyata Y, Kumada S, Hanakawa T, Aizawa H, Yano S, Kondo T, Mizusawa H, Manto M, Kakei S. Assessment and rating of motor cerebellar ataxias with the Kinect v2 depth sensor: extending our appraisal. Front Neurol. 2020;11:179. https://doi.org/10.3389/fneur.2020.00179.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Honda T, Nagao S, Hashimoto Y, Ishikawa K, Yokota T, Mizusawa H, Ito M. Tandem internal models execute motor learning in the cerebellum. Proc Natl Acad Sci U S A. 2018;115:7428–33. https://doi.org/10.1073/pnas.1716489115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bando K, Honda T, Ishikawa K, Takahashi Y, Mizusawa H, Hanakawa T. Impaired adaptive motor learning is correlated with cerebellar hemispheric gray matter atrophy in spinocerebellar ataxia patients: a voxel-based morphometry study. Front Neurol. 2019;10:1183. https://doi.org/10.3389/fneur.2019.01183.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kagaya K, Patek SN. Feed-forward motor control of ultrafast, ballistic movements. J Exp Biol. 2016;219:319–33. https://doi.org/10.1242/jeb.130518.

    Article  CAS  PubMed  Google Scholar 

  12. Popa LS, Ebner TJ. Cerebellum, predictions and errors. Front Cell Neurosci. 2018;12:524. https://doi.org/10.3389/fncel.2018.00524.

    Article  PubMed  Google Scholar 

  13. Lundbye-Jensen J, Petersen TH, Rothwell JC, Nielsen JB. Interference in ballistic motor learning: specificity and role of sensory error signals. PLoS ONE. 2011;6: e17451. https://doi.org/10.1371/journal.pone.0017451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R. Size of error affects cerebellar contributions to motor learning. J Neurophysiol. 2010;103:2275–84. https://doi.org/10.1152/jn.00822.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weissman-Fogel I, Granovsky Y. The, “virtual lesion” approach to transcranial magnetic stimulation: studying the brain-behavioral relationships in experimental pain. Pain Rep. 2019;4: e760. https://doi.org/10.1097/PR9.0000000000000760.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fleischmann R, Triller P, Brandt SA, Schmidt SH. Human premotor corticospinal projections are engaged in motor preparation at discrete time intervals: a TMS-induced virtual lesion study. Front Neuroergonomics. 2021;2. https://doi.org/10.3389/fnrgo.2021.678906.

  17. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014. https://doi.org/10.1016/j.brs.2014.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13. https://doi.org/10.1002/ana.410370603.

    Article  CAS  PubMed  Google Scholar 

  19. Matsugi A, Iwata Y, Mori N, Horino H, Hiraoka K. Long latency electromyographic response induced by transcranial magnetic stimulation over the cerebellum preferentially appears during continuous visually guided manual tracking task. Cerebellum. 2013;12:147–54. https://doi.org/10.1007/s12311-012-0402-6.

    Article  PubMed  Google Scholar 

  20. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014;7:643–9. https://doi.org/10.1016/j.brs.2014.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hiraoka K, Horino K, Yagura A, Matsugi A. Cerebellar TMS evokes a long latency motor response in the hand during a visually guided manual tracking task. Cerebellum. 2010;9:454–60. https://doi.org/10.1007/s12311-010-0187-4.

    Article  PubMed  Google Scholar 

  22. van Dun K, Bodranghien F, Manto M, Marien P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum. 2017;16:695–741. https://doi.org/10.1007/s12311-016-0840-7.

    Article  Google Scholar 

  23. Tanaka H, Matsugi A, Okada Y. The effects of imaginary voluntary muscle contraction and relaxation on cerebellar brain inhibition. Neurosci Res. 2017. https://doi.org/10.1016/j.neures.2017.11.004.

    Article  PubMed  Google Scholar 

  24. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3:161–9. https://doi.org/10.1016/j.brs.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  25. Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176:440–7. https://doi.org/10.1007/s00221-006-0628-y.

    Article  PubMed  Google Scholar 

  26. Matsugi A, Yoshida N, Nishishita S, Okada Y, Mori N, Oku K, Douchi S, Hosomi K, Saitoh Y. Cerebellum-mediated trainability of eye and head movements for dynamic gazing. PLoS ONE. 2019;14: e0224458. https://doi.org/10.1371/journal.pone.0224458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;371:185–9. https://doi.org/10.1016/j.neulet.2004.08.067.

    Article  CAS  PubMed  Google Scholar 

  28. Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum. 2010;9:548–55. https://doi.org/10.1007/s12311-010-0193-6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matsugi A, Kamata N, Tanaka T, Hiraoka K. Long latency fluctuation of the finger movement evoked by cerebellar TMS during visually guided manual tracking task. Indian J Physiol Pharmacol. 2012;56:193–200.

    PubMed  Google Scholar 

  30. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  31. Team J. JASP (Version 0.16) [Computer software]. 2021.

  32. Hadipour-Niktarash A, Lee CK, Desmond JE, Shadmehr R. Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. J Neurosci. 2007;27:13413–9. https://doi.org/10.1523/JNEUROSCI.2570-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolkorte R, Kamphuis J, Zijdewind I. Increased reaction times and reduced response preparation already starts at middle age. Front Aging Neurosci. 2014;6:79. https://doi.org/10.3389/fnagi.2014.00079.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Viejo G, Khamassi M, Brovelli A, Girard B. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning. Front Behav Neurosci. 2015;9:225. https://doi.org/10.3389/fnbeh.2015.00225.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bares M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. Cerebellum. 2019;18:266–86. https://doi.org/10.1007/s12311-018-0979-5.

    Article  PubMed  Google Scholar 

  36. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77. https://doi.org/10.1007/s12311-013-0511-x.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Spampinato D, Celnik P. Multiple motor learning processes in humans: defining their neurophysiological bases. Neuroscientist. 2021;27:246–67. https://doi.org/10.1177/1073858420939552.

    Article  PubMed  Google Scholar 

  38. Bolognini N, Ro T. Transcranial magnetic stimulation: disrupting neural activity to alter and assess brain function. J Neurosci. 2010;30:9647–50. https://doi.org/10.1523/JNEUROSCI.1990-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lannin NA, Horsley SA, Herbert R, McCluskey A, Cusick A. Splinting the hand in the functional position after brain impairment: a randomized, controlled trial. Arch Phys Med Rehabil. 2003;84:297–302. https://doi.org/10.1053/apmr.2003.50031.

    Article  PubMed  Google Scholar 

  40. Lee JA, Sechachalam S. The effect of wrist position on grip endurance and grip strength. J Hand Surg Am. 2016;41:e367–73. https://doi.org/10.1016/j.jhsa.2016.07.100.

    Article  PubMed  Google Scholar 

  41. Matsugi A, Mori N, Uehara S, Kamata N, Oku K, Mukai K, Nagano K. Task dependency of the long-latency facilitatory effect on the soleus H-reflex by cerebellar transcranial magnetic stimulation. NeuroReport. 2014;25:1375–80. https://doi.org/10.1097/WNR.0000000000000275.

    Article  PubMed  Google Scholar 

  42. Matsugi A, Mori N, Uehara S, Kamata N, Oku K, Okada Y, Kikuchi Y, Mukai K, Nagano K. Effect of cerebellar transcranial magnetic stimulation on soleus Ia presynaptic and reciprocal inhibition. NeuroReport. 2015;26:139–43. https://doi.org/10.1097/WNR.0000000000000315.

    Article  PubMed  Google Scholar 

  43. Matsugi A, Okada Y. Cerebellar transcranial direct current stimulation modulates the effect of cerebellar transcranial magnetic stimulation on the excitability of spinal reflex. Neurosci Res. 2020;150:37–43. https://doi.org/10.1016/j.neures.2019.01.012.

    Article  PubMed  Google Scholar 

  44. Matsugi A. Do changes in spinal reflex excitability elicited by transcranial magnetic stimulation differ based on the site of cerebellar stimulation? Somatosens Mot Res. 2018;35:1–6. https://doi.org/10.1080/08990220.2018.1465403.

    Article  Google Scholar 

  45. McCall AA, Miller DM, Yates BJ. Descending influences on vestibulospinal and vestibulosympathetic reflexes. Front Neurol. 2017;8:112. https://doi.org/10.3389/fneur.2017.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci. 2009;29:4993–9. https://doi.org/10.1523/JNEUROSCI.3720-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ebner TJ, Bloedel JR, Vitek JL, Schwartz AB. The effects of cerebellar stimulation on the stretch reflex in the spastic monkey. Brain. 1982;105(Pt 3):425–42. https://doi.org/10.1093/brain/105.3.425.

    Article  PubMed  Google Scholar 

  48. Mukaiyama K, Irie K, Takeda M, Yamashita R, Uemura S, Kanazawa S, Nagai-Tanima M, Aoyama T. Load distribution and forearm muscle activity during cylinder grip at various grip strength values. Hand Surg Rehabil. 2022. https://doi.org/10.1016/j.hansur.2021.12.010.

    Article  Google Scholar 

  49. Markanday A, Messner J, Thier P. A loss of a velocity-duration trade-off impairs movement precision in patients with cerebellar degeneration. Eur J Neurosci. 2018;48:1976–89. https://doi.org/10.1111/ejn.14062.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58:208–13. https://doi.org/10.1016/j.rehab.2015.05.005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Akari Hayashi, Yuna Fujii, Keigo Maehara, and Ayumu Watanabe of Shijonawate Gakuen University, who assisted with the many experiments conducted for the purposes of this research. We thank all the volunteers for their participation in this experiment and Editage (www.editage.jp) for providing English language editing.

Funding

This study was funded by JSPS KAKENHI (grant number 20K11298). This study was partially supported by the Japan Agency for Medical Research and Development (21 dm0307007).

Author information

Authors and Affiliations

Authors

Contributions

Matsugi A, Nishishita S, and Yoshida N conceptualized and designed this study, and other authors revised the experimental protocols. The experimental equipment for magnetic stimulation was provided by Mori N, Hosomi K, and Saitoh Y, whereas Matsugi A, Nishishita S, and Yoshida N provided other equipment. The experiments were conducted by Matsugi A and Mori N. Nishishita S and Yoshida N analyzed all angle data. Tanaka H and Douchi S analyzed all EMG data. The formal analysis was conducted mainly by Matsugi, Nishishita, and Yoshida, and other authors advised all analyses. Honda T and Odagaki M supervised the study. Funding acquisition was conducted by Matsugi A, Bando K, Kikuchi Y, Nakano H, Okada Y, Mori N, Hosomi K, and Saitoh Y. The original draft of the manuscript was written by Matsugi A, and all authors reviewed, edited, and approved the manuscript prior to journal submission.

Corresponding author

Correspondence to Akiyoshi Matsugi.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of Shijonawate Gakuen University (approval code: 19–9).

Consent to Publication

All participants were briefed on the publication plans and signed a consent form before participation.

Informed Consent

All participants were briefed on the experiment and signed a consent form before participation.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsugi, A., Nishishita, S., Yoshida, N. et al. Impact of Repetitive Transcranial Magnetic Stimulation to the Cerebellum on Performance of a Ballistic Targeting Movement. Cerebellum 22, 680–697 (2023). https://doi.org/10.1007/s12311-022-01438-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01438-9

Keywords

Navigation