Skip to main content
Log in

The Differences in Structure and Function of the Cerebellum Between Cantonese-Mandarin Bilinguals and Mandarin Monolinguals: a Multi-model MRI Study

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract 

The effects of the long-term bilingual experience on structure and function of the cerebellum remain unclear. To explore whether there are differences in cerebellar gray matter structure between Cantonese-Mandarin bilinguals and Mandarin monolinguals and whether these different cerebellar structures have different resting-state functional connectivity (RSFC) with the cerebrum between the two groups, 30 Cantonese-Mandarin bilingual and 30 Mandarin monolingual college students were scanned by the T1-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Voxel-based morphology (VBM) analysis and RSFC analysis were used to analyze the cerebellar gray matter volume (GMV) and cerebellar-cerebro functional connectivity, respectively. Correlation analysis was performed between GMV/RSFC and the rapid automatized naming (RAN) and cognitive control. Compared to Mandarin monolinguals, Cantonese-Mandarin bilinguals showed larger GMV in bilateral cerebellar inferior posterior lobe (including bilateral VIIIa, VIIIb,IX, and right X, Vermis VIIIb, and Vermis IX) and a significant increase in RSFC coupling of the right inferior cerebellar posterior lobe with orbital part of left inferior frontal gyrus (IFG). In addition, there was a positive correlation between average response time (RT) of Mandarin alphanumeric RAN and RSFC between the right inferior posterior lobe of cerebellum and left IFG of all participants. The long-term Cantonese-Mandarin bilingual experience can increase the GMV of the bilateral cerebellar inferior posterior lobe and the RSFC between the right inferior cerebellar posterior lobe with orbital part of left inferior frontal gyrus (IFG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Costa A, Sebastian-Galles N. How does the bilingual experience sculpt the brain? Nat Rev Neurosci. 2014;15(5):336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bialystok E, Craik FI, Luk G. Bilingualism: consequences for mind and brain. Trends Cogn Sci. 2012;16(4):240–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grundy JG, Anderson JAE, Bialystok E. Neural correlates of cognitive processing in monolinguals and bilinguals. Ann N Y Acad Sci. 2017;1396(1):183–201.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wong B, Yin B, O’Brien B. Neurolinguistics: structure, function, and connectivity in the bilingual brain. Biomed Res Int. 2016;2016:7069274.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manto M, Marien P. Schmahmann’s syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marien P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Kuper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thurling M, Timmann D, Wouters E, Ziegler W. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.

    PubMed  PubMed Central  Google Scholar 

  8. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127(3):334–42.

    Article  PubMed  Google Scholar 

  9. Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.

    Article  CAS  PubMed  Google Scholar 

  10. Ait Khelifa-Gallois N, Puget S, Longaud A, Laroussinie F, Soria C, Sainte-Rose C, Dellatolas G. Clinical evidence of the role of the cerebellum in the suppression of overt articulatory movements during reading. A study of reading in children and adolescents treated for cerebellar pilocytic astrocytoma. Cerebellum. 2015;14(2):97–105.

  11. Raschle NM, Zuk J, Gaab N. Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proc Natl Acad Sci U S A. 2012;109(6):2156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meng X, You H, Song M, Desroches AS, Wang Z, Wei N, Tian M, Gaab N, Ding G. Neural deficits in auditory phonological processing in Chinese children with English reading impairment. Biling-Lang Cogn. 2016;19(2):331–46.

    Article  Google Scholar 

  13. Norton ES, Black JM, Stanley LM, Tanaka H, Gabrieli JD, Sawyer C, Hoeft F. Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia. 2014;61:235–46.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cummine J, Chouinard B, Szepesvari E, Georgiou GK. An examination of the rapid automatized naming-reading relationship using functional magnetic resonance imaging. Neuroscience. 2015;305:49–66.

    Article  CAS  PubMed  Google Scholar 

  15. Abutalebi J, Green D. Bilingual language production: the neurocognition of language representation and control. J Neurolinguistics. 2007;20(3):242–75.

    Article  Google Scholar 

  16. Abutalebi J, Green DW. Control mechanisms in bilingual language production: neural evidence from language switching studies. Lang Cogn Process. 2008;23(4):557–82.

    Article  Google Scholar 

  17. Abutalebi J, Green DW. Neuroimaging of language control in bilinguals: neural adaptation and reserve. Biling-Lang Cogn. 2016;19(4):689–98.

    Article  Google Scholar 

  18. Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage. 2000;11(6 Pt 1):805–21.

    Article  CAS  PubMed  Google Scholar 

  19. Yaxu Y, Ren Z, Ward J, Jiang Q. Atypical brain structures as a function of gray matter volume (GMV) and gray matter density (GMD) in young adults relating to autism spectrum traits. Front Psychol. 2020;11:523.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Filippi R, Periche Tomas E, Papageorgiou A, Bright P. A role for the cerebellum in the control of verbal interference: Comparison of bilingual and monolingual adults. PLoS ONE. 2020;15(4): e0231288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pliatsikas C, Johnstone T, Marinis T. Grey matter volume in the cerebellum is related to the processing of grammatical rules in a second language: a structural voxel-based morphometry study. Cerebellum. 2014;13(1):55–63.

    Article  PubMed  Google Scholar 

  22. Danylkiv A, Krafnick AJ. A meta-analysis of gray matter differences between bilinguals and monolinguals. Front Hum Neurosci. 2020;14:146.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deng Y, Wu Q, Weng X. Unimodal and multimodal regions for logographic language processing in left ventral occipitotemporal cortex. Front Hum Neurosci. 2013;7:619.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu L, Nie Y, Chang C, Gao JH, Niu Z. Different patterns and development characteristics of processing written logographic characters and alphabetic words: an ALE meta-analysis. Hum Brain Mapp. 2014;35(6):2607–18.

    Article  PubMed  Google Scholar 

  25. Olulade OA, Jamal NI, Koo DS, Perfetti CA, LaSasso C, Eden GF. Neuroanatomical evidence in support of the bilingual advantage theory. Cereb Cortex. 2016;26(7):3196–204.

    Article  CAS  PubMed  Google Scholar 

  26. Crinion JT, Green DW, Chung R, Ali N, Grogan A, Price GR, Mechelli A, Price CJ. Neuroanatomical markers of speaking Chinese. Hum Brain Mapp. 2009;30(12):4108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu J, Yang J, Chen M, Li S, Zhang Z, Kang C, Ding G, Guo T. Brain network reconfiguration for language and domain-general cognitive control in bilinguals. Neuroimage. 2019;199:454–65.

    Article  PubMed  Google Scholar 

  28. Abutalebi J, Annoni JM, Zimine I, Pegna AJ, Seghier ML, Lee-Jahnke H, Lazeyras F, Cappa SF, Khateb A. Language control and lexical competition in bilinguals: an event-related FMRI study. Cereb Cortex. 2008;18(7):1496–505.

    Article  PubMed  Google Scholar 

  29. Yuan Q, Wu J, Zhang M, Zhang Z, Chen M, Ding G, Lu C, Guo T. Patterns and networks of language control in bilingual language production. Brain Struct Funct. 2021;226(4):963–77.

    Article  PubMed  Google Scholar 

  30. Gao Z, Guo X, Liu C, Mo Y, Wang J. Right inferior frontal gyrus: an integrative hub in tonal bilinguals. Hum Brain Mapp. 2020;41(8):2152–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yue MZ. Comparison and analysis of vocabulary and grammar differences between Mandarin and Cantonese. Journal of Changchun Normal University. 2004;23(3):79–81.

    Google Scholar 

  32. Cai ZGG, Pickering MJ, Yan H, Branigan HP. Lexical and syntactic representations in closely related languages: Evidence from Cantonese-Mandarin bilinguals. J Mem Lang. 2011;65(4):431–45.

    Article  Google Scholar 

  33. Tu L, Wang J, Abutalebi J, Jiang B, Pan X, Li M, Gao W, Yang Y, Liang B, Lu Z, Huang R. Language exposure induced neuroplasticity in the bilingual brain: a follow-up fMRI study. Cortex. 2015;64:8–19.

    Article  PubMed  Google Scholar 

  34. Lohmann G, Hoehl S, Brauer J, Danielmeier C, Bornkessel-Schlesewsky I, Bahlmann J, Turner R, Friederici A. Setting the frame: the human brain activates a basic low-frequency network for language processing. Cereb Cortex. 2010;20(6):1286–92.

    Article  PubMed  Google Scholar 

  35. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  36. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Institute of language, Chinese Academy of Social Sciences, Institute of Ethnology and anthropology, Chinese Academy of Social Sciences, Language and Information Science Research Center of City University of Hong Kong. Atlas of Chinese language (2nd Edition). Beijing: The Commercial Press; 2012.

  38. Anderson JAE, Mak L, Keyvani Chahi A, Bialystok E. The language and social background questionnaire: assessing degree of bilingualism in a diverse population. Behav Res Methods. 2018;50(1):250–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  CAS  PubMed  Google Scholar 

  40. Friedman NP, Miyake A. Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex. 2017;86:186–204.

    Article  PubMed  Google Scholar 

  41. Miyake A, Friedman NP. The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci. 2012;21(1):8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49–100.

    Article  CAS  PubMed  Google Scholar 

  43. MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109(2):163–203.

    Article  CAS  PubMed  Google Scholar 

  44. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol Gen. 1992;1:15–23.

    Article  Google Scholar 

  45. Verbruggen F, Logan GD. Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J Exp Psychol Gen. 2008;137(4):649–72.

    Article  PubMed Central  Google Scholar 

  46. Heaton RK, Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. . Wisconsin Card Sorting Test (WCST). manual revised and expanded.: Odessa: Psychological Assessment Resources, Inc; 1993.

  47. Denckla MB, Rudel R. Rapid, “automatized” naming of pictured objects, colors, letters and numbers by normal children. Cortex. 1974;10(2):186–202.

    Article  CAS  PubMed  Google Scholar 

  48. Loveall SJ, Channell MM, Phillips BA, Conners FA. Phonological recoding, rapid automatized naming, and orthographic knowledge. J Exp Child Psychol. 2013;116(3):738–46.

    Article  PubMed  Google Scholar 

  49. González-Valenzuela MJ, López-Montiel D, Díaz-Giráldez F, Martín-Ruiz I. Effect of cognitive variables on the reading ability of spanish children at age seven. Front Psychol. 2021;12: 663596.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics. 2016;14(3):339–51.

    Article  PubMed  Google Scholar 

  51. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.

    Article  PubMed  Google Scholar 

  52. Rodríguez-Takeuchi SY, Baena-Caldas GP, Orejuela-Zapata JF, Granados Sánchez AM. Analysis of the pattern of functional activation of the cerebellum and its topographical correlation. Radiologia (Engl Ed). 2020;62(4):298–305.

    Article  PubMed  Google Scholar 

  53. Greeley B, Weber RC, Denyer R, Ferris JK, Rubino C, White K, Boyd LA. Aberrant cerebellar resting-state functional connectivity related to reading performance in struggling readers. Dev Sci. 2021;24(2): e13022.

    Article  PubMed  Google Scholar 

  54. Wong PC. Hemispheric specialization of linguistic pitch patterns. Brain Res Bull. 2002;59(2):83–95.

    Article  PubMed  Google Scholar 

  55. Koppelmans V, Hoogendam YY, Hirsiger S, Mérillat S, Jäncke L, Seidler RD. Regional cerebellar volumetric correlates of manual motor and cognitive function. Brain Struct Funct. 2017;222(4):1929–44.

    Article  PubMed  Google Scholar 

  56. Richardson FM, Price CJ. Structural MRI studies of language function in the undamaged brain. Brain Struct Funct. 2009;213(6):511–23.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ridler K, Veijola JM, Tanskanen P, Miettunen J, Chitnis X, Suckling J, Murray GK, Haapea M, Jones PB, Isohanni MK, Bullmore ET. Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia. Proc Natl Acad Sci U S A. 2006;103(42):15651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moore DM, D’Mello AM, McGrath LM, Stoodley CJ. The developmental relationship between specific cognitive domains and grey matter in the cerebellum. Dev Cogn Neurosci. 2017;24:1–11.

    Article  PubMed  Google Scholar 

  59. Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron. 2019;102(5):918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramnani N. Automatic and controlled processing in the corticocerebellar system. Prog Brain Res. 2014;210:255–85.

    Article  Google Scholar 

  61. E KH, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.

  62. Ma J, Wu Y, Sun T, Cai L, Fan X, Li X. Neural substrates of bilingual processing in a logographic writing system: An fMRI study in Chinese Cantonese-Mandarin bilinguals. Brain Res. 2020;1738: 146794.

    Article  CAS  PubMed  Google Scholar 

  63. Siok WT, Jin Z, Fletcher P, Tan LH. Distinct brain regions associated with syllable and phoneme. Hum Brain Mapp. 2003;18(3):201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. D’Souza D, D’Souza H. Bilingual language control mechanisms in anterior cingulate cortex and dorsolateral prefrontal cortex: a developmental perspective. J Neurosci. 2016;36(20):5434–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu CY, Ho MH, Chen SH. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage. 2012;63(1):381–91.

    Article  PubMed  Google Scholar 

  66. Price CJ. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci. 2010;1191:62–88.

    Article  PubMed  Google Scholar 

  67. Garbin G, Sanjuan A, Forn C, Bustamante JC, Rodriguez-Pujadas A, Belloch V, Hernandez M, Costa A, Avila C. Bridging language and attention: brain basis of the impact of bilingualism on cognitive control. Neuroimage. 2010;53(4):1272–8.

    Article  CAS  PubMed  Google Scholar 

  68. Tan LH, Laird AR, Li K, Fox PT. Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum Brain Mapp. 2005;25(1):83–91.

    Article  PubMed Central  Google Scholar 

  69. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez TA, Fiez JA. Current perspectives on the cerebellum and reading development. Neurosci Biobehav Rev. 2018;92:55–66.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Richards TL, Aylward EH, Field KM, Grimme AC, Raskind W, Richards AL, Nagy W, Eckert M, Leonard C, Abbott RD, Berninger VW. Converging evidence for triple word form theory in children with dyslexia. Dev Neuropsychol. 2006;30(1):547–89.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants for their participation in the study and the Brain Imaging Center of Institute for Brain Research and Rehabilitation in South China Normal University for their support in the data collection. This work was supported by Key Realm R&D Program of Guangdong Province [grant number 2019B030335001], Guangdong Basic and Applied Basic Research Foundation [grant number 2021A1515011757], and the National Natural Science Foundation of China [grant number 81673197].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhong Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Fan, X., Xu, X. et al. The Differences in Structure and Function of the Cerebellum Between Cantonese-Mandarin Bilinguals and Mandarin Monolinguals: a Multi-model MRI Study. Cerebellum 22, 628–639 (2023). https://doi.org/10.1007/s12311-022-01433-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01433-0

Keywords

Navigation