Skip to main content
Log in

Cerebello-basal Ganglia Networks and Cortical Network Global Efficiency

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum (CB) and basal ganglia (BG) each have topographically distinct functional subregions that are functionally and anatomically interconnected with cortical regions through discrete thalamic loops and with each other via disynaptic connections, with previous work detailing high levels of functional connectivity between these phylogenetically ancient regions. It was posited that this CB-BG network provides support for cortical systems processing, spanning cognitive, emotional, and motor domains, implying that subcortical network measures are strongly related to cortical network measures (Bostan & Strick, 2018); however, it is currently unknown how network measures within distinct CB-BG networks relate to cortical network measures. Here, 122 regions of interest comprising cognitive and motor CB-BG networks and 7 canonical cortical resting-state were used to investigate whether the integration (quantified using global efficiency, GE) of cognitive CB-BG network (CCBN) nodes and their segregation from motor CB-BG network (MCBN) nodes is related to cortical network GE and segregation in 233 non-related, right-handed participants (Human Connectome Project-1200). CCBN GE positively correlated with GE in the default mode, motor, and auditory networks and MCBN GE positively correlated with GE in all networks, except the default mode and emotional. MCBN segregation was related to motor network segregation. These findings highlight the CB-BG network’s potential role in cortical networks associated with executive function, task switching, and verbal working memory. This work has implications for understanding cortical network organization and cortical-subcortical interactions in healthy adults and may help in determining biomarkers and deciphering subcortical differences seen in disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37. https://doi.org/10.1016/j.neuropsychologia.2004.12.015.

    Article  PubMed  Google Scholar 

  2. Guell X, Gabrieli JDE, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage. 2018;172(January):437–49. https://doi.org/10.1016/j.neuroimage.2018.01.082.

    Article  PubMed  Google Scholar 

  3. Ward P, Seri And S, Cavanna AE. Functional neuroanatomy and behavioural correlates of the basal ganglia: evidence from lesion studies. Behav Neurol. 2013;26(4):219–23. https://doi.org/10.3233/BEN-2012-120264.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688(April 2018):62–75. https://doi.org/10.1016/j.neulet.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  5. Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739–51. https://doi.org/10.1038/nrn3112.

    Article  CAS  PubMed  Google Scholar 

  6. Lee D, Seo H, Jung MW. Neural basis of reinforcement learning and decision making. Annu Rev Neurosci. 2012;35:287–308. https://doi.org/10.1146/annurev-neuro-062111-150512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44. https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. In Brain 2004;447–459. https://doi.org/10.1016/S0079-6123(03)43042-2

  9. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci. 2010;107(18):8452–6. https://doi.org/10.1073/pnas.1000496107.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3. https://doi.org/10.1038/nn1544.

    Article  CAS  PubMed  Google Scholar 

  11. Bell CC. Evolution of Cerebellum-Like Structures. 2002;312–326.

  12. Grillner S, Robertson B. The basal ganglia over 500 million years. Curr Biol. 2016;26(20):R1088–100. https://doi.org/10.1016/j.cub.2016.06.041.

    Article  CAS  PubMed  Google Scholar 

  13. Herrick CJ. Origin and evolution of the cerebellum. Arch Neurol Psychiatry. 1924;11(6):621–52.

  14. Smeets WJAJ, Marín O, González A. Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat. 2000;196(4):501–17. https://doi.org/10.1017/S0021878299006007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stephenson-Jones M, Ericsson J, Robertson B, Grillner S. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny. J Comp Neurol. 2012;520(13):2957–73. https://doi.org/10.1002/cne.23087.

    Article  PubMed  Google Scholar 

  16. Barton RA, Venditti C. Rapid evolution of the cerebellum in humans and other great apes. Curr Biol. 2014;24(20):2440–4. https://doi.org/10.1016/j.cub.2014.08.056.

    Article  CAS  PubMed  Google Scholar 

  17. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, Ranganath C. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52. https://doi.org/10.1016/j.neuroimage.2009.10.045.

    Article  CAS  Google Scholar 

  18. Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8. https://doi.org/10.1093/cercor/bhj024.

    Article  PubMed  Google Scholar 

  19. Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The cerebellar cognitive affective /Schmahmann syndrome: a Task Force paper. Cerebellum. 2020;19(1):102–25. https://doi.org/10.1007/s12311-019-01068-8.

    Article  CAS  PubMed  Google Scholar 

  20. Balsters JH, Ranganath C. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43(2):388–98. https://doi.org/10.1016/j.neuroimage.2008.07.010.

    Article  CAS  PubMed  Google Scholar 

  21. Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and cognition: evidence for the encoding of higher order rules. Cereb Cortex. 2013;23(6):1433–43. https://doi.org/10.1093/cercor/bhs127.

    Article  Google Scholar 

  22. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371–8. https://doi.org/10.1038/s41593-019-0436-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stoodley CJ, Limperopoulos C. Structure–function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med. 2016;21(5):356–64. https://doi.org/10.1016/j.siny.2016.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stephan H, Andy OJ. Quantitative comparisons of brain structures from insectivores to primates. Am Zool. 1964;4(1):59–74.

    Article  CAS  PubMed  Google Scholar 

  25. Di Martino A, Scheres A, Margulies DS, Kelly AMC, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex. 2008;18(12):2735–47. https://doi.org/10.1093/cercor/bhn041.

    Article  PubMed  Google Scholar 

  26. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner J, Frackowiak RSJ. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52. https://doi.org/10.1523/JNEUROSCI.1486-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19(6):338–50. https://doi.org/10.1038/s41583-018-0002-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hausman HK, Jackson TB, Goen JRM, Bernard JA. From synchrony to asynchrony: cerebellar–basal ganglia functional circuits in young and older adults. Cereb Cortex. 2019;41(18):5255–81. https://doi.org/10.1093/cercor/bhz121.

    Article  Google Scholar 

  29. Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14. https://doi.org/10.1111/ejn.12314.

    Article  PubMed  Google Scholar 

  30. Bernard JA, Peltier SJ, Wiggins JL, Jaeggi SM, Buschkuehl M, Fling BW, Kwak Y, Jonides J, Monk CS, Seidler RD. Disrupted cortico-cerebellar connectivity in older adults. Neuroimage. 2013;83:103–19. https://doi.org/10.1016/j.neuroimage.2013.06.042.

    Article  PubMed  Google Scholar 

  31. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, Jaeggi SM, Buschkuehl M, Monk CS, Jonides J, Peltier SJ. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;6(August):1–19. https://doi.org/10.3389/fnana.2012.00031.

    Article  Google Scholar 

  32. Caligiore D, Helmich RC, Hallett M, Moustafa AA, Timmermann L, Toni I, Baldassarre G. Parkinson’s disease as a system-level disorder. Nat Publ Group Parkinson’s Dis. 2016;2(1):16025. https://doi.org/10.1038/npjparkd.2016.25.

    Article  Google Scholar 

  33. DeLong M, Wichmann T. Changing views of basal ganglia circuits and circuit disorders. Clin EEG Neurosci. 2010;41(2):61–7. https://doi.org/10.1177/155005941004100204.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709. https://doi.org/10.1093/brain/aws360.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Argyelan M, Carbon M, Niethammer M, Ulug AM, Voss HU, Bressman SB, Dhawan V, Eidelberg D. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29(31):9740–7. https://doi.org/10.1523/JNEUROSCI.2300-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain. 2008;131(9):2499–509. https://doi.org/10.1093/brain/awn168.

    Article  PubMed  Google Scholar 

  37. Asanuma K. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129(10):2667–78. https://doi.org/10.1093/brain/awl162.

    Article  PubMed  Google Scholar 

  38. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30. https://doi.org/10.1093/cercor/bht165.

    Article  PubMed  Google Scholar 

  39. Ji JL, Diehl C, Schleifer C, Tamminga CA, Keshavan MS, Sweeney JA, Clementz BA, Hill SK, Pearlson G, Yang G, Creatura G, Krystal JH, Repovs G, Murray J, Winkler A, Anticevic A. Schizophrenia exhibits bi-directional brain-wide alterations in cortico-striato-cerebellar circuits. Cereb Cortex. 2019;29(11):4463–87. https://doi.org/10.1093/cercor/bhy306.

    Article  PubMed Central  Google Scholar 

  40. Mavroudis IA, Petrides F, Manani M, Chatzinikolaou F, Ciobică AS, Pădurariu M, Kazis D, Njau SN, Costa VG, Baloyannis SJ. Purkinje cells pathology in schizophrenia. A morphometric approach. Romanian J Morphol Embryol= Rev Roum Morphol Embryol, 2017;58(2), 419–424. http://www.ncbi.nlm.nih.gov/pubmed/28730225

  41. Mehler-Wex C, Riederer P, Gerlach M. Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotox Res. 2006;10(3–4):167–79. https://doi.org/10.1007/BF03033354.

    Article  CAS  PubMed  Google Scholar 

  42. Walther S, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Viher PV. Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull. 2017;43(5):982–92. https://doi.org/10.1093/schbul/sbx091.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bo J, Lee C-M, Kwak Y, Peltier SJ, Bernard JA, Buschkuehl M, Jaeggi SM, Wiggins JL, Jonides J, Monk CS, Seidler RD. Lifespan differences in cortico-striatal resting state connectivity. Brain Connectivity. 2014;4(3):166–80. https://doi.org/10.1089/brain.2013.0155.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Griffanti L, Stratmann P, Rolinski M, Filippini N, Zsoldos E, Mahmood A, Zamboni G, Douaud G, Klein JC, Kivimäki M, Singh-Manoux A, Hu MT, Ebmeier KP, Mackay CE. Exploring variability in basal ganglia connectivity with functional MRI in healthy aging. Brain Imaging Behav. 2018;12(6):1822–7. https://doi.org/10.1007/s11682-018-9824-1.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Karahanoğlu FI, Van De Ville D. Dynamics of large-scale fMRI networks: deconstruct brain activity to build better models of brain function. Curr Opin Biomed Eng. 2017;3:28–36. https://doi.org/10.1016/j.cobme.2017.09.008.

  46. Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381. https://doi.org/10.1371/journal.pcbi.1000381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network. Ann N Y Acad Sci. 2008;1124(1):1–38. https://doi.org/10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  48. Fox KCR, Spreng RN, Ellamil M, Andrews-Hanna JR, Christoff K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage. 2015;111:611–21. https://doi.org/10.1016/j.neuroimage.2015.02.039.

    Article  PubMed  Google Scholar 

  49. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003.

    Article  PubMed  Google Scholar 

  50. Sporns O, Chialvo D, Kaiser M, Hilgetag C. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8(9):418–25. https://doi.org/10.1016/j.tics.2004.07.008.

    Article  PubMed  Google Scholar 

  51. Whitfield-Gabrieli S, Nieto-Castanon A. Conn : a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41. https://doi.org/10.1089/brain.2012.0073.

    Article  PubMed  Google Scholar 

  52. Song J-H. The role of attention in motor control and learning. Curr Opin Psychol. 2019;29:261–5. https://doi.org/10.1016/j.copsyc.2019.08.002.

    Article  PubMed  Google Scholar 

  53. Arnsten AFT, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–67. https://doi.org/10.1016/j.jaac.2012.01.008.

    Article  PubMed  Google Scholar 

  54. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45. https://doi.org/10.1152/jn.00339.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97. https://doi.org/10.1093/cercor/bhp135.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brissenden JA, Levin EJ, Osher DE, Halko MA, Somers DC. Functional evidence for a cerebellar node of the dorsal attention network. J Neurosci. 2016;36(22):6083–96. https://doi.org/10.1523/JNEUROSCI.0344-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Es DM, van der Zwaag W, Knapen T. Topographic maps of visual space in the human cerebellum. Curr Biol. 2019;29(10):1689-1694.e3. https://doi.org/10.1016/j.cub.2019.04.012.

    Article  CAS  PubMed  Google Scholar 

  58. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65. https://doi.org/10.1093/cercor/bhp157.

    Article  PubMed  Google Scholar 

  59. Cassady K, Gagnon H, Lalwani P, Simmonite M, Foerster B, Park DC, Peltier SJ, Petrou M, Taylor SF, Weissman DH, Seidler RD, Polk TA. NeuroImage sensorimotor network segregation declines with age and is linked to GABA and to sensorimotor performance. NeuroImage. 2019;186(July 2018):234–44. https://doi.org/10.1016/j.neuroimage.2018.11.008.

    Article  CAS  PubMed  Google Scholar 

  60. Cassady KE, Adams JN, Chen X, Maass A, Harrison TM, Landau S, Baker S, Jagust W. Alzheimer’s pathology is associated with dedifferentiation of intrinsic functional memory networks in aging. Cereb Cortex. 2021;31(10):4781–93. https://doi.org/10.1093/cercor/bhab122.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci. 2014;111(46):E4997–5006. https://doi.org/10.1073/pnas.1415122111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mi T-M, Zhang W, Li Y, Liu A-P, Ren Z-L, Chan P. Altered functional segregated sensorimotor, associative, and limbic cortical-striatal connections in Parkinson’s disease: an fMRI investigation. Front Neurol. 2021;12(October):1–8. https://doi.org/10.3389/fneur.2021.720293.

    Article  Google Scholar 

  63. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson-Prior L, Marcus D, Michalareas G, Moeller S, Yacoub E. The Human Connectome Project: a data acquisition perspective. Neuroimage. 2012;62(4):2222–31. https://doi.org/10.1016/j.neuroimage.2012.02.018.

    Article  PubMed  Google Scholar 

  64. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–24. https://doi.org/10.1016/j.neuroimage.2013.04.127.

    Article  PubMed  Google Scholar 

  65. Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach EJ, Behrens TEJ, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC. The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19(9):1175–87. https://doi.org/10.1038/nn.4361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage 2012;62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

  67. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, Carlson S. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76. https://doi.org/10.1162/jocn.2009.21382.

    Article  PubMed  Google Scholar 

  68. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70. https://doi.org/10.1016/j.neuroimage.2011.08.065.

    Article  PubMed  Google Scholar 

  69. Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE. Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage. 2006;31(4):1453–74. https://doi.org/10.1016/j.neuroimage.2006.02.004.

    Article  PubMed  Google Scholar 

  70. Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS, Meyer-Lindenberg A. A validated network of effective amygdala connectivity. Neuroimage. 2007;36(3):736–45. https://doi.org/10.1016/j.neuroimage.2007.03.022.

    Article  PubMed  Google Scholar 

  71. Risk BB, Kociuba MC, Rowe DB. Impacts of simultaneous multislice acquisition on sensitivity and specificity in fMRI. Neuroimage. 2018;172(February):538–53. https://doi.org/10.1016/j.neuroimage.2018.01.078.

    Article  PubMed  Google Scholar 

  72. Todd N, Josephs O, Zeidman P, Flandin G, Moeller S, Weiskopf N. Functional sensitivity of 2D simultaneous multi-slice echo-planar imaging: effects of acceleration on g-factor and physiological noise. Front Neurosci. 2017;11(MAR), 1–14. https://doi.org/10.3389/fnins.2017.00158

  73. Murphy K, Bodurka J, Bandettini PA. How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage. 2007;34(2):565–74. https://doi.org/10.1016/j.neuroimage.2006.09.032.

    Article  PubMed  Google Scholar 

  74. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3(2):e17. https://doi.org/10.1371/journal.pcbi.0030017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701. https://doi.org/10.1103/PhysRevLett.87.198701.

    Article  CAS  PubMed  Google Scholar 

  76. Sheffield JM, Kandala S, Burgess GC, Harms MP, Barch DM. Cingulo-opercular network efficiency mediates the association between psychotic-like experiences and cognitive ability in the general population. Biol Psych: Cogn Neurosci Neuroimaging. 2016;1(6):498–506. https://doi.org/10.1016/j.bpsc.2016.03.009.

    Article  Google Scholar 

  77. Meszlényi RJ, Hermann P, Buza K, Gál V, Vidnyánszky Z. Resting state fMRI functional connectivity analysis using dynamic time warping. Front Neurosci. 2017;11(FEB):1–17. https://doi.org/10.3389/fnins.2017.00075.

    Article  Google Scholar 

  78. Bernard JA, Nguyen AD, Hausman HK, Maldonado T, Ballard HK, Jackson TB, Eakin SM, Lokshina Y, Goen JRM. Shaky scaffolding: age differences in cerebellar activation revealed through activation likelihood estimation meta-analysis. Hum Brain Mapp. 2020;41(18):5255–81. https://doi.org/10.1002/hbm.25191.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Clark SV, King TZ, Turner JA. Cerebellar contributions to proactive and reactive control in the stop signal task: a systematic review and meta-analysis of functional magnetic resonance imaging studies. Neuropsychol Rev. 2020;30(3):362–85. https://doi.org/10.1007/s11065-020-09432-w.

    Article  PubMed  Google Scholar 

  80. Von der Gablentz J, Tempelmann C, Münte TF, Heldmann M. Performance monitoring and behavioral adaptation during task switching: an fMRI study. Neuroscience. 2015;285:227–35. https://doi.org/10.1016/j.neuroscience.2014.11.024.

    Article  CAS  PubMed  Google Scholar 

  81. Coste CP, Kleinschmidt A. Cingulo-opercular network activity maintains alertness. Neuroimage. 2016;128:264–72. https://doi.org/10.1016/j.neuroimage.2016.01.026.

    Article  PubMed  Google Scholar 

  82. Neta M, Schlaggar BL, Petersen SE. Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions. Neuroimage. 2014;99:59–68. https://doi.org/10.1016/j.neuroimage.2014.05.053.

    Article  PubMed  Google Scholar 

  83. Marvel CL, Morgan OP, Kronemer SI. How the motor system integrates with working memory. Neurosci Biobehav Rev. 2019;102(April):184–94. https://doi.org/10.1016/j.neubiorev.2019.04.017.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M, Jonides J, Monk CS, Seidler RD. Dissociable functional networks of the human dentate nucleus. Cereb Cortex. 2014;24(8):2151–9. https://doi.org/10.1093/cercor/bht065.

    Article  PubMed  Google Scholar 

  85. Jackson TB, Maldonado T, Eakin SM, Orr JM, Bernard JA. Cerebellar and prefrontal-cortical engagement during higher-order rule learning in older adulthood. Neuropsychologia. 2020;148(July):107620. https://doi.org/10.1016/j.neuropsychologia.2020.107620.

    Article  PubMed  Google Scholar 

  86. Da Cunha C, Gomez-A A, Blaha CD. The role of the basal ganglia in motivated behavior. Rev Neurosci. 2012;23(5–6):747–67. https://doi.org/10.1515/revneuro-2012-0063.

    Article  CAS  PubMed  Google Scholar 

  87. Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience. 2014;282(12):248–57. https://doi.org/10.1016/j.neuroscience.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  88. Schmidt L, D’Arc BF, Lafargue G, Galanaud D, Czernecki V, Grabli D, Schüpbach M, Hartmann A, Lévy R, Dubois B, Pessiglione M. Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain. 2008;131(5):1303–10. https://doi.org/10.1093/brain/awn045.

    Article  PubMed  Google Scholar 

  89. Sgambato-Faure V, Worbe Y, Epinat J, Féger J, Tremblay L. Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates. Brain Struct Funct. 2016;221(1):345–64. https://doi.org/10.1007/s00429-014-0911-9.

    Article  PubMed  Google Scholar 

  90. Yin HH, Ostlund SB, Balleine BW. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci. 2008;28(8):1437–48. https://doi.org/10.1111/j.1460-9568.2008.06422.x.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT, Eickhoff SB. Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage. 2012;60(1):830–46. https://doi.org/10.1016/j.neuroimage.2011.11.050.

    Article  CAS  PubMed  Google Scholar 

  92. MacLean PD. Evolution of audiovocal communication as reflected by the therapsid-mammalian transition and the limbic thalamocingulate division. Physiological Control of Mammalian Vocalization 1988;185–201. Springer US. https://doi.org/10.1007/978-1-4613-1051-8_11

  93. Deen B, Pitskel NB, Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex. 2011;21(7):1498–506. https://doi.org/10.1093/cercor/bhq186.

    Article  PubMed  Google Scholar 

  94. E K-H, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615. https://doi.org/10.1002/hbm.22194.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Portions of this research were conducted with the advanced computing resources provided by Texas A&M High Performance Research Computing.

Funding

National Institute on Aging, Grant/Award Number: R01AG064010x01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bryan Jackson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The investigation reported here used data from human subjects that are publicly available. All the data used here are available from the Human Connectome Project. All the planned analyses were submitted to the Institutional Review Board and were deemed to be exempt from additional oversight due to the nature of the dataset. The authors followed all the guidelines for data access and storage as put forward in the data sharing agreement from the Human Connectome Project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, T.B., Bernard, J.A. Cerebello-basal Ganglia Networks and Cortical Network Global Efficiency. Cerebellum 22, 588–600 (2023). https://doi.org/10.1007/s12311-022-01418-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01418-z

Keywords

Navigation