Skip to main content
Log in

Cerebellar Transcranial Magnetic Stimulation (TMS) Impairs Visual Working Memory

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

An increasing body of evidence points to the involvement of the cerebellum in cognition. Specifically, previous studies have shown that the superior and inferior portions of the cerebellum are involved in different verbal working memory (WM) mechanisms as part of two separate cerebro-cerebellar loops for articulatory rehearsal and phonological storage mechanisms. In comparison, our understanding of the involvement of the cerebellum in visual WM remains limited. We have previously shown that performance in verbal WM is disrupted by single-pulse transcranial magnetic stimulation (TMS) of the right superior cerebellum. The present study aimed to expand on this notion by exploring whether the inferior cerebellum is similarly involved in visual WM. Here, we used fMRI-guided, double-pulse TMS to probe the necessity of left superior and left inferior cerebellum in visual WM. We first conducted an fMRI localizer using the Sternberg visual WM task, which yielded targets in left superior and inferior cerebellum. Subsequently, TMS stimulation of these regions at the end of the encoding phase resulted in decreased accuracy in the visual WM task. Differences in the visual WM deficits caused by stimulation of superior and inferior left cerebellum raise the possibility that these regions are involved in different stages of visual WM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson EJ, Mannan SK, Rees G, Sumner P, Kennard C. Overlapping functional anatomy for working memory and visual search. Exp Brain Res. 2010;200(1):91–107. https://doi.org/10.1007/s00221-009-2000-5.

    Article  PubMed  Google Scholar 

  2. Baddeley A. Working Memory. Curr Biol. 2010;20(4):136–40.

    Article  Google Scholar 

  3. Baier B, Dieterich M, Stoeter P, Birklein F, Muller NG. Anatomical correlate of impaired covert visual attentional processes in patients with cerebellar lesions. J Neurosci. 2010;30(10):3770–6. https://doi.org/10.1523/JNEUROSCI.0487-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brissenden JA, Levin EJ, Osher DE, Halko MA, Somers DC. Functional evidence for a cerebellar node of the dorsal attention network. J Neurosci. 2016;36(22):6083–96. https://doi.org/10.1523/JNEUROSCI.0344-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brissenden JA, Somers DC. Cortico–cerebellar networks for visual attention and working memory. Curr Opin Psychol. 2019;29:239–47. https://doi.org/10.1016/j.copsyc.2019.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brissenden JA, Tobyne SM, Halko MA, Somers DC. Stimulus-specific visual working memory representations in human cerebellar lobule VIIb/VIIIa. J Neurosci. 2021;41(5):1033–45. https://doi.org/10.1523/JNEUROSCI.1253-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brissenden JA, Tobyne SM, Osher DE, Levin EJ, Halko MA, Somers DC. Topographic cortico-cerebellar networks revealed by visual attention and working memory. Curr Biol. 2018;28(21):3364-3372.e5. https://doi.org/10.1016/j.cub.2018.08.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45. https://doi.org/10.1152/jn.00339.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37. https://doi.org/10.1016/j.neuropsychologia.2004.12.015.

    Article  PubMed  Google Scholar 

  10. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. A common network of functional areas for attention and eye movements. Neuron. 1998;21(4):761–73. https://doi.org/10.1016/S0896-6273(00)80593-0.

    Article  CAS  PubMed  Google Scholar 

  11. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15. https://doi.org/10.1038/nrn755.

    Article  CAS  PubMed  Google Scholar 

  12. Corbin L, Marquer J. Is Sternberg’s memory scanning task really a short-term memory task? Swiss J Psychol. 2013;72(4):181–96. https://doi.org/10.1024/1421-0185/a000112.

    Article  Google Scholar 

  13. Deng Z-D, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13. https://doi.org/10.1016/j.brs.2012.02.005.

    Article  PubMed  Google Scholar 

  14. Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60. https://doi.org/10.1002/ana.20604.

    Article  PubMed  Google Scholar 

  15. Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85. https://doi.org/10.1523/JNEUROSCI.17-24-09675.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E K-H Chen, S.-H. A., Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies: a meta-analysis of cerebellar contributions. Hum Brain Mapp. 2014;35(2):593-615. https://doi.org/10.1002/hbm.22194

  17. Elliott R, Dolan RJ. Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. J Neurosci. 1999;19(12):5066–73. https://doi.org/10.1523/JNEUROSCI.19-12-05066.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  19. Gottwald B. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524–31. https://doi.org/10.1136/jnnp.2003.018093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020;19(1):1–5. https://doi.org/10.1007/s12311-019-01083-9.

    Article  PubMed  Google Scholar 

  21. Hagler DJ, Sereno MI. Spatial maps in frontal and prefrontal cortex. Neuroimage. 2006;29(2):567–77. https://doi.org/10.1016/j.neuroimage.2005.08.058.

    Article  PubMed  Google Scholar 

  22. Herwig U. Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clin Neurophysiol. 2002;113(4):462–8. https://doi.org/10.1016/S1388-2457(02)00026-3.

    Article  PubMed  Google Scholar 

  23. Hoang DH, Pagnier A, Cousin E, Guichardet K, Schiff I, Icher C, Dilharreguy B, Grill J, Frappaz D, Berger C, Schneider F, Dubois-Teklali F, Krainik A. Anatomo-functional study of the cerebellum in working memory in children treated for medulloblastoma. J Neuroradiol. 2019;46(3):207–13. https://doi.org/10.1016/j.neurad.2019.01.093.

    Article  PubMed  Google Scholar 

  24. Ito M. Cerebellum and neural control. Raven Press; 1984.

    Google Scholar 

  25. Jonides J, Smith EE, Marshuetz C, Koeppe RA, Reuter-Lorenz PA. Inhibition in verbal working memory revealed by brain activation. Proc Natl Acad Sci. 1998;95(14):8410–3. https://doi.org/10.1073/pnas.95.14.8410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H. Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol. 2001;112(2):250–8. https://doi.org/10.1016/S1388-2457(00)00513-7.

    Article  CAS  PubMed  Google Scholar 

  27. Liu T, Hospadaruk L, Zhu DC, Gardner JL. Feature-specific attentional priority signals in human cortex. J Neurosci. 2011;31(12):4484–95. https://doi.org/10.1523/JNEUROSCI.5745-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer JS, Bittner RA, Nikolić D, Bledowski C, Goebel R, Linden DEJ. Common neural substrates for visual working memory and attention. Neuroimage. 2007;36(2):441–53. https://doi.org/10.1016/j.neuroimage.2007.03.007.

    Article  PubMed  Google Scholar 

  29. Ng HBT, Kao K-LC, Chan YC, Chew E, Chuang KH, Chen SHA. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory. Behav Brain Res. 2016;305:164–73. https://doi.org/10.1016/j.bbr.2016.02.027.

    Article  PubMed  Google Scholar 

  30. Oh S-H, Kim M-S. The role of spatial working memory in visual search efficiency. Psychon Bull Rev. 2004;11(2):275–81. https://doi.org/10.3758/BF03196570.

    Article  PubMed  Google Scholar 

  31. Pascual-Leone A. Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2000;10(2):232–7. https://doi.org/10.1016/S0959-4388(00)00081-7.

    Article  CAS  PubMed  Google Scholar 

  32. Paus T.. Combination of transcranial magnetic stimulation with brain imaging. In T. Mazziotta, J. A. (Ed.), Brain Mapping: The Methods (2nd ed., pp. 691–705). Academic Press, 2002.

  33. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci. 1997;17(9):3178–84. https://doi.org/10.1523/JNEUROSCI.17-09-03178.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paus T, Wolforth M. Transcranial magnetic stimulation during PET: Reaching and verifying the target site. 4. 1998.

  35. Peters T, Davey B, Munger P, Comeau R, Evans A. Three-dimensional multimodal image-guidance for neurosurgery. IEEE Trans Med Imaging. 1996;15(2):8.

    Article  Google Scholar 

  36. Peterson MS, Kramer AF, Wang RF, Irwin DE, McCarley JS. Visual search has memory. Psychol Sci. 2001;12(4):287–92. https://doi.org/10.1111/1467-9280.00353.

    Article  CAS  PubMed  Google Scholar 

  37. Rac-Lubashevsky R, Kessler Y. Decomposing the n-back task: An individual differences study using the reference-back paradigm. Neuropsychologia. 2016;90:190–9. https://doi.org/10.1016/j.neuropsychologia.2016.07.013.

    Article  PubMed  Google Scholar 

  38. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(2):306–20. https://doi.org/10.1093/brain/awh685.

    Article  PubMed  Google Scholar 

  39. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain J Neurol. 2000;123(Pt 5):1051–1061. https://doi.org/10.1093/brain/123.5.1051

  40. Rushworth MFS, Ellison A, Walsh V. Complementary localization and lateralization of orienting and motor attention. Nat Neurosci. 2001;4(6):656–61. https://doi.org/10.1038/88492.

    Article  CAS  PubMed  Google Scholar 

  41. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, Carlson S. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76. https://doi.org/10.1162/jocn.2009.21382.

    Article  PubMed  Google Scholar 

  42. Sheu Y-S, Liang Y, Desmond JE. Disruption of cerebellar prediction in verbal working memory. Front Hum Neurosci. 2019;13. https://doi.org/10.3389/fnhum.2019.00061

  43. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. 1999;283:5.

  44. Sobczak-Edmans M, Ng THB, Chan YC, Chew E, Chuang KH, Chen SHA. Temporal dynamics of visual working memory. Neuroimage. 2016;124:1021–30. https://doi.org/10.1016/j.neuroimage.2015.09.038.

    Article  CAS  PubMed  Google Scholar 

  45. Sternberg S. High-speed scanning in human memory. Sci New Ser. 1966;153(3736):652–4.

    CAS  Google Scholar 

  46. Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM. Cerebellar contributions to spatial memory. Neurosci Lett. 2014;578:182–6. https://doi.org/10.1016/j.neulet.2014.06.057.

    Article  CAS  PubMed  Google Scholar 

  47. Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19(13):5632–43. https://doi.org/10.1523/JNEUROSCI.19-13-05632.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136. https://doi.org/10.1016/0010-0285(80)90005-5.

    Article  CAS  PubMed  Google Scholar 

  49. Veltman DJ, Rombouts SARB, Dolan RJ. Maintenance versus manipulation in verbal working memory revisited: an fMRI study. Neuroimage. 2003;18(2):247–56. https://doi.org/10.1016/S1053-8119(02)00049-6.

    Article  PubMed  Google Scholar 

  50. Yeh Y-Y, Kuo B-C, Liu H-L. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes. Brain Res. 2007;1130:146–57. https://doi.org/10.1016/j.brainres.2006.10.065.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to especially thank Wei Peng Teo and Kai-Ling Cathy Kao for their contributions to running parts of the experiments and initial data analyses for the present work.

Funding

This work was supported by a Tier 2 research grant from the Ministry of Education, Singapore (MOE2011-T2-1–031). NV-G was supported by Singapore’s National Research Foundation (NRF) under the Science of Learning grant (NRF2016-SOL002-011). JED was supported by National Institutes of Health (NIH) grants R01 MH104588 and P50 HD103538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Annabel Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nestor Viñas-Guasch and Tommy Hock Beng Ng contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viñas-Guasch, N., Ng, T.H.B., Heng, J.G. et al. Cerebellar Transcranial Magnetic Stimulation (TMS) Impairs Visual Working Memory. Cerebellum 22, 332–347 (2023). https://doi.org/10.1007/s12311-022-01396-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01396-2

Keywords

Navigation