Skip to main content
Log in

The First 50 Years of Postnatal Neurogenesis in the Cerebellum: a Long Journey Across Phenomena, Mechanisms, and Human Disease

  • Cerebellar Classics
  • Published:
The Cerebellum Aims and scope Submit manuscript

A Cerebellar Classics to this article was published on 26 October 2021

Abstract

The discovery by Altman and coworkers of adult-born microneurons in the olfactory bulb and dentate gyrus has triggered a long stream of studies and many attempts to harness adult neurogenesis, promote regeneration after injury, and contrast cognitive decline in the elderly. Likewise, the discovery of postnatal neurogenesis in the cerebellum has provided the framework for many subsequent molecular studies, including investigations of developmental processes and the assessment of GC progenitor (GCP) clonal expansion in the context of human disease. Here, I will briefly discuss some of the discoveries made in the field of cerebellar development over the years building upon the findings of Altman and his colleagues, touching upon signaling pathways that regulate granule cell neurogenesis and their involvement in developmental and neoplastic disorders of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Consalez GG, Goldowitz D, Casoni F, Hawkes R. Origins, development, and compartmentation of the granule cells of the cerebellum. Front Neural Circuits. 2020;14: 611841. https://doi.org/10.3389/fncir.2020.611841.

    Article  CAS  PubMed  Google Scholar 

  2. Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci USA. 2006;103:12138–43. https://doi.org/10.1073/pnas.0604911103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  4. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319–35. https://doi.org/10.1002/cne.901240303.

    Article  CAS  PubMed  Google Scholar 

  5. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol. 1969;137:433–57. https://doi.org/10.1002/cne.901370404.

    Article  CAS  PubMed  Google Scholar 

  6. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7:179–93. https://doi.org/10.1038/nrn1867.

    Article  CAS  PubMed  Google Scholar 

  7. Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50. https://doi.org/10.1038/nrn2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das GD, Altman J. Postnatal neurogenesis in the cerebellum of the cat and tritiated thymidine autoradiography. Brain Res. 1971;30:323–30. https://doi.org/10.1016/0006-8993(71)90082-5.

    Article  CAS  PubMed  Google Scholar 

  9. Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 1972;145:353–97. https://doi.org/10.1002/cne.901450305.

    Article  CAS  PubMed  Google Scholar 

  10. Saunders JW Jr. Death in embryonic systems. Science. 1966;154:604–12. https://doi.org/10.1126/science.154.3749.604.

    Article  PubMed  Google Scholar 

  11. Saunders JW Jr. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool. 1948;108:363–403. https://doi.org/10.1002/jez.1401080304.

    Article  PubMed  Google Scholar 

  12. Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol. 1975;34:125–54.

    PubMed  Google Scholar 

  13. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30:31–48.

    PubMed  Google Scholar 

  14. Chaplin N, Tendeng C, Wingate RJ. Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci. 2010;30:3048–57. https://doi.org/10.1523/JNEUROSCI.6201-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haldipur P, Aldinger KA, Bernardo S, Deng M, Timms AE, Overman LM, Winter C, Lisgo SN, Razavi F, Silvestri E, Manganaro L, Adle-Biassette H, Guimiot F, Russo R, Kidron D, Hof PR, Gerrelli D, Lindsay SJ, Dobyns WB, Glass IA, Alexandre P, Millen KJ. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science. 2019;366:454–60. https://doi.org/10.1126/science.aax7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi Y, Borghesani PR, Chan JA, Segal RA. Migration from a mitogenic niche promotes cell-cycle exit. J Neurosci. 2005;25:10437–45. https://doi.org/10.1523/JNEUROSCI.1559-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakashima K, Umeshima H, Kengaku M. Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors. Dev Dyn. 2015;244:748–58. https://doi.org/10.1002/dvdy.24276.

    Article  PubMed  Google Scholar 

  18. Legué E, Riedel E, Joyner AL. Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum. Development. 2015;142:1661–71. https://doi.org/10.1242/dev.120287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smeyne RJ, Chu T, Lewin A, Bian F, Sanlioglu S, Kunsch C, Lira SA, Oberdick J. Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci. 1995;6:230–51. https://doi.org/10.1006/mcne.1995.1019.

    Article  CAS  PubMed  Google Scholar 

  20. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron. 1999;22:103–14.

    Article  CAS  Google Scholar 

  21. Dahmane N, Ruiz-i-Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.

    Article  Google Scholar 

  22. Wallace VA. Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 1999;9:445–8.

    Article  CAS  Google Scholar 

  23. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP. Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol. 2004;270:393–410. https://doi.org/10.1016/j.ydbio.2004.03.007.

    Article  CAS  PubMed  Google Scholar 

  24. Aguilar A, Meunier A, Strehl L, Martinovic J, Bonniere M, Attie-Bitach T, Encha-Razavi F, Spassky N. Analysis of human samples reveals impaired SHH-dependent cerebellar development in Joubert syndrome/Meckel syndrome. Proc Natl Acad Sci USA. 2012;109:16951–6. https://doi.org/10.1073/pnas.1201408109.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haldipur P, Bharti U, Govindan S, Sarkar C, Iyengar S, Gressens P, Mani S. Expression of sonic hedgehog during cell proliferation in the human cerebellum. Stem Cells Dev. 2012;21:1059–68. https://doi.org/10.1089/scd.2011.0206.

    Article  CAS  PubMed  Google Scholar 

  26. Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma. PLoS ONE. 2013;8: e71455. https://doi.org/10.1371/journal.pone.0071455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, Tocchini-Valentini GP. Primary cilia in the murine cerebellum and in mutant models of medulloblastoma. Cell Mol Neurobiol. 2017;37:145–54. https://doi.org/10.1007/s10571-016-0354-3.

    Article  CAS  PubMed  Google Scholar 

  28. Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron. 2001;31:557–68. https://doi.org/10.1016/s0896-6273(01)00395-6.

    Article  CAS  PubMed  Google Scholar 

  29. Anne SL, Govek EE, Ayrault O, Kim JH, Zhu X, Murphy DA, Van Aelst L, Roussel MF, Hatten ME. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS ONE. 2013;8: e81769. https://doi.org/10.1371/journal.pone.0081769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kullmann JA, Trivedi N, Howell D, Laumonnerie C, Nguyen V, Banerjee SS, Stabley DR, Shirinifard A, Rowitch DH, Solecki DJ. Oxygen tension and the VHL-Hif1alpha pathway determine onset of neuronal polarization and cerebellar germinal zone exit. Neuron. 2020;106(607–23): e5. https://doi.org/10.1016/j.neuron.2020.02.025.

    Article  CAS  Google Scholar 

  31. Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet. 2004;36:1053–5.

    Article  CAS  Google Scholar 

  32. Aruga J, Millen KJ. ZIC1 Function in normal cerebellar development and human developmental pathology. Adv Exp Med Biol. 2018;1046:249–68. https://doi.org/10.1007/978-981-10-7311-3_13.

    Article  CAS  PubMed  Google Scholar 

  33. Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC, Krantz ID, Dobyns WB, Millen KJ. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet. 2009;41:1037–42. https://doi.org/10.1038/ng.422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romani M, Micalizzi A, Valente EM. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol. 2013;12:894–905. https://doi.org/10.1016/S1474-4422(13)70136-4.

    Article  PubMed  Google Scholar 

  35. Parisi M and Glass I. Joubert syndrome. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 2003 (updated 2017).

  36. Chang CH, Zanini M, Shirvani H, Cheng JS, Yu H, Feng CH, Mercier AL, Hung SY, Forget A, Wang CH, Cigna SM, Lu IL, Chen WY, Leboucher S, Wang WJ, Ruat M, Spassky N, Tsai JW, Ayrault O. Atoh1 controls primary cilia formation to allow for SHH-triggered granule neuron progenitor proliferation. Dev Cell. 2019;48(184–99): e5. https://doi.org/10.1016/j.devcel.2018.12.017.

    Article  CAS  Google Scholar 

  37. Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, Yoder BK, Millen KJ. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27:9780–9. https://doi.org/10.1523/JNEUROSCI.5586-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol. 2008;317:246–59. https://doi.org/10.1016/j.ydbio.2008.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, Rutkowski S, Ellison DW, Malkin D, Taylor MD, Gajjar A, Pfister SM. Medulloblastoma Nat Rev Dis Primers. 2019;5:11. https://doi.org/10.1038/s41572-019-0063-6.

    Article  PubMed  Google Scholar 

  40. Merk DJ, Segal RA. Sonic hedgehog signaling is blue: insights from the patched mutant mice. Trends Neurosci. 2018;41:870–2. https://doi.org/10.1016/j.tins.2018.08.013.

    Article  CAS  PubMed  Google Scholar 

  41. Evans DG Farndon PA. Nevoid basal cell carcinoma syndrome. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 2002 (updated 2018).

  42. Farioli-Vecchioli S, Cina I, Ceccarelli M, Micheli L, Leonardi L, Ciotti MT, De Bardi M, Di Rocco C, Pallini R, Cavallaro S, Tirone F. Tis21 knock-out enhances the frequency of medulloblastoma in Patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons. J Neurosci. 2012;32:15547–64. https://doi.org/10.1523/JNEUROSCI.0412-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopes A, Magrinelli E and Telley L. Emerging roles of single-cell multi-omics in studying developmental temporal patterning. Int J Mol Sci 2020: 21. https://doi.org/10.3390/ijms21207491

Download references

Funding

This work was conducted without any funding from public or private sources.

Author information

Authors and Affiliations

Authors

Contributions

Concept, writing, and approval of the final version: GGC.

Corresponding author

Correspondence to G. Giacomo Consalez.

Ethics declarations

Ethics Committee Approval

Not applicable.

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

figure a
figure b
figure c
figure d
figure e
figure f
figure g
figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consalez, G.G. The First 50 Years of Postnatal Neurogenesis in the Cerebellum: a Long Journey Across Phenomena, Mechanisms, and Human Disease. Cerebellum 21, 9–18 (2022). https://doi.org/10.1007/s12311-021-01315-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01315-x

Keywords

Navigation