Abstract
Emerging evidence suggests that the cerebellum may contribute to variety of cognitive capacities, including social cognition. Nonverbal learning disability (NVLD) is characterized by visual-spatial and social impairment. Recent functional neuroimaging studies have shown that children with NVLD have altered cerebellar resting-state functional connectivity, which is associated with various symptom domains. However, little is known about cerebellar white matter microstructure in NVLD and whether it contributes to social deficits. Twenty-seven children (12 with NVLD, 15 typically developing (TD)) contributed useable diffusion tensor imaging data. Tract-based spatial statistics (TBSS) were used to quantify fractional anisotropy (FA) in the cerebellar peduncles. Parents completed the Child Behavior Checklist, providing a measure of social difficulty. Children with NVLD had greater fractional anisotropy in the left and right inferior cerebellar peduncle. Furthermore, right inferior cerebellar peduncle FA was associated with social impairment as measured by the Child Behavior Checklist Social Problems subscale. Finally, the association between NVLD diagnosis and greater social impairment was mediated by right inferior cerebellar peduncle FA. These findings provide additional evidence that the cerebellum contributes both to social cognition and to the pathophysiology of NVLD.
This is a preview of subscription content, access via your institution.


References
Margolis AE, Broitman J, Davis JM, Alexander L, Hamilton A, Liao Z, Banker S, Thomas L, Ramphal B, Salum GA, Merikangas K, Goldsmith J, Paus T, Keyes K, Milham MP. Estimated prevalence of nonverbal learning disability among North American children and adolescents. JAMA Network Open. 2020;3:e202551. https://doi.org/10.1001/jamanetworkopen.2020.2551.
Banker SM, Pagliaccio D, Ramphal B, Thomas L, Dranovsky A, Margolis AE. Altered structure and functional connectivity of the hippocampus are associated with social and mathematical difficulties in nonverbal learning disability. Hippocampus 2020: n/a. https://doi.org/10.1002/hipo.23264.
Banker SM, Ramphal B, Pagliaccio D, Thomas L, Rosen E, Sigel AN, Zeffiro T, Marsh R, Margolis AE. Spatial network connectivity and spatial reasoning ability in children with nonverbal learning disability. Sci Rep. 2020;10:561. https://doi.org/10.1038/s41598-019-56003-y.
Margolis AE, Pagliaccio D, Thomas L, Banker S, Marsh R. Salience network connectivity and social processing in children with nonverbal learning disability or autism spectrum disorder. Neuropsychology. 2019;33:135–43. https://doi.org/10.1037/neu0000494.
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, Vandervert L, Leggio M. Consensus paper: cerebellum and social cognition. The Cerebellum. 2020. https://doi.org/10.1007/s12311-020-01155-1.
Semrud-Clikeman M, Walkowiak J, Wilkinson A, Minne EP. Direct and indirect measures of social perception, behavior, and emotional functioning in children with Asperger’s disorder, nonverbal learning disability, or ADHD. J Abnorm Child Psychol. 2010;38:509–19. https://doi.org/10.1007/s10802-009-9380-7.
Heleven E, van Dun K, Van Overwalle F. The posterior cerebellum is involved in constructing social action sequences: an fMRI study. Sci Rep. 2019;9:11110. https://doi.org/10.1038/s41598-019-46962-7.
Van Overwalle F, Ma Q, Heleven E. The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: a meta-analysis. Soc Cogn Affect Neurosci. 2020. https://doi.org/10.1093/scan/nsaa124.
Olivito G, Lupo M, Laghi F, Clausi S, Baiocco R, Cercignani M, Bozzali M, Leggio M. Lobular patterns of cerebellar resting-state connectivity in adults with autism spectrum disorder. Eur J Neurosci. 2018;47:729–35. https://doi.org/10.1111/ejn.13752.
Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–51. https://doi.org/10.1038/s41593-017-0004-1.
D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9. https://doi.org/10.1016/j.nicl.2015.02.007.
Shukla DK, Keehn B, Lincoln AJ, Müller RA. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49(1269–78):78.e1-2. https://doi.org/10.1016/j.jaac.2010.08.018.
Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, Curran S, Robertson D, Murphy DGM. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage. 2008;41:1184–91. https://doi.org/10.1016/j.neuroimage.2008.03.041.
Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Azuma J, Matsuzaki J, Watanabe Y, Fujita N, Taniike M. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum. 2013;12:645–56. https://doi.org/10.1007/s12311-013-0475-x.
Sivaswamy L, Kumar A, Rajan D, Behen M, Muzik O, Chugani D, Chugani H. A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder. J Child Neurol. 2010;25:1223–31. https://doi.org/10.1177/0883073809358765.
Brito AR, Vasconcelos MM, Domingues RC, Hygino da Cruz LC Jr, Rodrigues LS, Gasparetto EL, Calçada CA. Diffusion tensor imaging findings in school-aged autistic children. J Neuroimaging. 2009;19:337–43. https://doi.org/10.1111/j.1552-6569.2009.00366.x.
Okugawa G, Nobuhara K, Minami T, Takase K, Sugimoto T, Saito Y, Yoshimura M, Kinoshita T. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: a diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1408–12. https://doi.org/10.1016/j.pnpbp.2006.05.014.
Thomas AR, Lacadie C, Vohr B, Ment LR, Scheinost D. Fine motor skill mediates visual memory ability with microstructural neuro-correlates in cerebellar peduncles in prematurely born adolescents. Cereb Cortex. 2017;27:322–9. https://doi.org/10.1093/cercor/bhw415.
Davis K, Margolis AE, Thomas L, Huo Z, Marsh R. Amygdala sub-regional functional connectivity predicts anxiety in children with reading disorder. Dev Sci. 2018;21:e12631. https://doi.org/10.1111/desc.12631.
Ramphal B, DeSerisy M, Pagliaccio D, Raffanello E, Rauh V, Tau G, Posner J, Marsh R, Margolis A. Associations between amygdala-prefrontal functional connectivity and age depend on neighborhood socioeconomic status. Cerebral Cortex Communications. 2020. https://doi.org/10.1093/texcom/tgaa033.
He X, Liu W, Li X, Li Q, Liu F, Rauh VA, Yin D, Bansal R, Duan Y, Kangarlu A, Peterson BS, Xu D. Automated assessment of the quality of diffusion tensor imaging data using color cast of color-encoded fractional anisotropy images. Magn Reson Imaging. 2014;32:446–56. https://doi.org/10.1016/j.mri.2014.01.013.
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19.
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78. https://doi.org/10.1016/j.neuroimage.2015.10.019.
Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage. 2017;152:450–66. https://doi.org/10.1016/j.neuroimage.2017.02.085.
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–505. https://doi.org/10.1016/j.neuroimage.2006.02.024.
Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570–82. https://doi.org/10.1016/j.neuroimage.2007.12.035.
Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36:630–44. https://doi.org/10.1016/j.neuroimage.2007.02.049.
Achenbach T, Rescorla L. Manual for the ASEBA school-age forms & profiles: an integrated system of mult-informant assessment. Burlington: University of Vermont, Research Center for Children, Youth & Families; 2001.
Constantino JN, Gruber CP. The Social Responsiveness Scale Manual. Los Angeles: Western Psychological Services; 2005.
Pagliaccio D. scipub: Summarize Data for Scientific Publication R package version 1.1.0. https://CRAN.R-project.org/package=scipub. Accessed 6 Jan 2021.
Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the doʼs and donʼts of diffusion MRI. Neuroimage. 2013;73:239–54. https://doi.org/10.1016/j.neuroimage.2012.06.081.
Kitazawa S, Kimura T, Yin P-B. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature. 1998;392:494–7. https://doi.org/10.1038/33141.
Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum (London, England). 2011;10:683–93. https://doi.org/10.1007/s12311-010-0243-0.
Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, Heck DH, Jaeger D, Jörntell H, Kawato M. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum. 2017;16:230–52.
Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci. 2015;18:1798–803. https://doi.org/10.1038/nn.4167.
Jossinger S, Mawase F, Ben-Shachar M, Shmuelof L. Locomotor adaptation is associated with microstructural properties of the inferior cerebellar peduncle. Cerebellum. 2020;19:370–82. https://doi.org/10.1007/s12311-020-01116-8.
Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21:313–32. https://doi.org/10.1016/j.tics.2017.02.005.
Van Overwalle F, Manto M, Leggio M, Delgado-García JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses. 2019;128:33–42. https://doi.org/10.1016/j.mehy.2019.05.014.
Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141:248–70. https://doi.org/10.1093/brain/awx317.
Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.
Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64. https://doi.org/10.1146/annurev-neuro-070918-050258.
Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75. https://doi.org/10.1016/j.neulet.2018.07.005.
Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.
Wu X, Ashe J, Bushara KO. Role of olivocerebellar system in timing without awareness. Proc Natl Acad Sci. 2011;108:13818. https://doi.org/10.1073/pnas.1104096108.
Jacobson GA, Rokni D, Yarom Y. A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci. 2008;31:617–25. https://doi.org/10.1016/j.tins.2008.09.005.
Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol. 2008;100:1557–61. https://doi.org/10.1152/jn.00961.2007.
Mogan R, Fischer R, Bulbulia JA. To be in synchrony or not? A meta-analysis of synchronyʼs effects on behavior, perception, cognition and affect. J Exp Soc Psychol. 2017;72:13–20. https://doi.org/10.1016/j.jesp.2017.03.009.
LaFrance M. Nonverbal synchrony and rapport: analysis by the cross-lag panel technique. Soc Psychol Q. 1979;42:66–70. https://doi.org/10.2307/3033875.
Miles LK, Nind LK, Macrae CN. The rhythm of rapport: interpersonal synchrony and social perception. J Exp Soc Psychol. 2009;45:585–9. https://doi.org/10.1016/j.jesp.2009.02.002.
Hove MJ, Risen JL. Itʼs all in the timing: interpersonal synchrony increases affiliation. Soc Cogn. 2009;27:949–60. https://doi.org/10.1521/soco.2009.27.6.949.
Wang Y, Olson IR. The Original Social Network: white matter and social cognition. Trends Cogn Sci. 2018;22:504–16. https://doi.org/10.1016/j.tics.2018.03.005.
Czekóová K, Zemánková P, Shaw DJ, Bareš M. Social cognition and idiopathic isolated cervical dystonia. J Neural Transm. 2017;124:1097–104. https://doi.org/10.1007/s00702-017-1725-8.
Kemp J, Berthel MC, Dufour A, Després O, Henry A, Namer IJ, Musacchio M, Sellal F. Caudate nucleus and social cognition: neuropsychological and SPECT evidence from a patient with focal caudate lesion. Cortex. 2013;49:559–71. https://doi.org/10.1016/j.cortex.2012.01.004.
Funding
This work was supported by NIEHS grant K23ES026239 (to AEM), the NVLD Project (to AEM), and the Promise Project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Approval
All research protocols conform to the recognized standards outlined in the Declaration of Helsinki and the US Federal Policy for the Protection of Human Subjects.
Informed Consent
All participating children and guardians provided written informed assent and consent, respectively.
Competing Interest
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 38 kb)
Rights and permissions
About this article
Cite this article
Ramphal, B., Pagliaccio, D., Thomas, L.V. et al. Contributions of Cerebellar White Matter Microstructure to Social Difficulty in Nonverbal Learning Disability. Cerebellum 20, 931–937 (2021). https://doi.org/10.1007/s12311-021-01265-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12311-021-01265-4
Keywords
- Neurodevelopment
- Neuroimaging
- Diffusion tensor imaging
- Cerebellum
- Nonverbal learning disability