Skip to main content
Log in

Feasibility of combining functional near-infrared spectroscopy with electroencephalography to identify chronic stroke responders to cerebellar transcranial direct current stimulation—a computational modeling and portable neuroimaging methodological study

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Feasibility of portable neuroimaging of cerebellar transcranial direct current stimulation (ctDCS) effects on the cerebral cortex has not been investigated vis-à-vis cerebellar lobular electric field strength. We studied functional near-infrared spectroscopy (fNIRS) in conjunction with electroencephalography (EEG) to measure changes in the brain activation at the prefrontal cortex (PFC) and the sensorimotor cortex (SMC) following ctDCS as well as virtual reality–based balance training (VBaT) before and after ctDCS treatment in 12 hemiparetic chronic stroke survivors. We performed general linear modeling (GLM) that putatively associated the lobular electric field strength with the changes in the fNIRS-EEG measures at the ipsilesional and contra-lesional PFC and SMC. Here, fNIRS-EEG measures were found in the latent space from canonical correlation analysis (CCA) between the changes in total hemoglobin (tHb) concentrations (0.01–0.07Hz and 0.07–0.13Hz bands) and log10-transformed EEG bandpower within 1–45 Hz where significant (Wilks’ lambda>0.95) canonical correlations were found only for the 0.07–0.13-Hz band. Also, the first principal component (97.5% variance accounted for) of the mean lobular electric field strength was a good predictor of the latent variables of oxy-hemoglobin (O2Hb) concentrations and log10-transformed EEG bandpower. GLM also provided insights into non-responders to ctDCS who also performed poorly in the VBaT due to ideomotor apraxia. Future studies should investigate fNIRS-EEG joint-imaging in a larger cohort to identify non-responders based on GLM fitting to the fNIRS-EEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Dun K, Manto M. Non-invasive cerebellar stimulation: moving towards clinical applications for cerebellar and extra-cerebellar disorders. Cerebellum. 2018;17:259–63.

    Article  PubMed  Google Scholar 

  2. Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, Pellicciari MC, et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol. 2019;76:170–8.

    Article  PubMed  Google Scholar 

  3. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation--a consensus paper. Cerebellum. 2014;13:121–38.

    Article  CAS  PubMed  Google Scholar 

  4. Dyke K, Kim S, Jackson GM, Jackson SR. Intra-subject consistency and reliability of response following 2 mA transcranial direct current stimulation. Brain Stimul. 2016;9:819–25.

    Article  PubMed  Google Scholar 

  5. Van de Winckel A, Carey JR, Bisson TA, Hauschildt EC, Streib CD, Durfee WK. Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study. J NeuroEng Rehabil. 2018;15:83.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carvalho F, Brietzke AP, Gasparin A, Dos Santos FP, Vercelino R, Ballester RF, et al. Home-based transcranial direct current stimulation device development: an updated protocol used at home in healthy subjects and fibromyalgia patients. J Vis Exp. 2018;(137):57614. https://doi.org/10.3791/57614

  7. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–95.

    Article  PubMed  Google Scholar 

  8. Dutta A, Jacob A, Chowdhury SR, Das A, Nitsche MA. EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation--a stroke case series. J Med Syst. 2015;39:205.

    Article  PubMed  Google Scholar 

  9. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35.

    Article  CAS  PubMed  Google Scholar 

  10. Koo B, Lee H-G, Nam Y, Kang H, Koh CS, Shin H-C, et al. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. J Neurosci Methods. 2015;244:26–32.

    Article  PubMed  Google Scholar 

  11. Quaresima V, Ferrari M. Functional Near-Infrared Spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organ Res Methods. 2019;22:46–68.

    Article  Google Scholar 

  12. Guhathakurta D, Dutta A. Computational pipeline for NIRS-EEG joint imaging of tDCS-evoked cerebral responses—an application in ischemic stroke. Front Neurosci [Internet]. 2016 [cited 2018 Jun 16];10. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2016.00261/full.

  13. Zandvliet SB, Meskers CGM, Kwakkel G, van Wegen EEH. Short-term effects of cerebellar tDCS on standing balance performance in patients with chronic stroke and healthy age-matched elderly. Cerebellum. 2018;17:575–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ballard HK, Goen JRM, Maldonado T, Bernard JA. Effects of cerebellar transcranial direct current stimulation on the cognitive stage of sequence learning. J Neurophysiol. 2019;122:490–9.

    Article  PubMed  Google Scholar 

  15. Nemani A, Yücel MA, Kruger U, Gee DW, Cooper C, Schwaitzberg SD, et al. Assessing bimanual motor skills with optical neuroimaging. Sci Adv. 2018;4:eaat3807.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sood M, Besson P, Muthalib M, Jindal U, Perrey S, Dutta A, et al. NIRS-EEG joint imaging during transcranial direct current stimulation: online parameter estimation with an autoregressive model. J Neurosci Methods. 2016;274:71–80.

    Article  PubMed  Google Scholar 

  17. Hunter MA, Lieberman G, Coffman BA, Trumbo MC, Armenta ML, Robinson CSH, et al. Mindfulness-based training with transcranial direct current stimulation modulates neuronal resource allocation in working memory: a randomized pilot study with a nonequivalent control group. Heliyon. 2018;4:e00685.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McKendrick R, Parasuraman R, Ayaz H. Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front Syst Neurosci [Internet]. Frontiers; 2015 [cited 2020 Sep 9];9. Available from: https://www.frontiersin.org/articles/10.3389/fnsys.2015.00027/full.

  19. Batsikadze G, Rezaee Z, Chang D-I, Gerwig M, Herlitze S, Dutta A, et al. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: a systematic evaluation. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation [Internet]. 2019 [cited 2019 Jun 15];0. Available from: https://www.brainstimjrnl.com/article/S1935-861X(19)30201-3/abstract.

  20. Fernandez L, Major BP, Teo W-P, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  PubMed  Google Scholar 

  21. Rezaee Z, Dutta A. Cerebellar Lobules Optimal Stimulation (CLOS): A computational pipeline to optimize cerebellar lobule-specific electric field distribution. Front Neurosci [Internet]. 2019 [cited 2019 Jun 15];13. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2019.00266/full#B5.

  22. Rezaee Z, Kaura S, Solanki D, Dash A, Srivastava MVP, Lahiri U, et al. Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—a pilot study. Brain Sci. 2020;10:94.

    Article  PubMed Central  Google Scholar 

  23. Verma S, Kumar D, Kumawat A, Dutta A, Lahiri U. A Low-Cost Adaptive Balance Training Platform for Stroke Patients: A Usability Study. IEEE Trans Neural Syst Rehabil Eng. 2017;25:935–44.

    Article  PubMed  Google Scholar 

  24. Kumar D, Sinha N, Dutta A, Lahiri U. Virtual reality-based balance training system augmented with operant conditioning paradigm. Biomed Eng Online. 2019;18:90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jindal U, Sood M, Chowdhury SR, Das A, Kondziella D, Dutta A. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging: an ischemic stroke study. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3399–402.

    Google Scholar 

  26. Muthalib M, Besson P, Rothwell J, Perrey S. Focal hemodynamic responses in the stimulated hemisphere during high-definition transcranial direct current stimulation. Neuromodulation. 2018;21:348–54.

    Article  PubMed  Google Scholar 

  27. Solanki D, Rezaee Z, Dutta A, Lahiri U. Investigating the feasibility of cerebellar transcranial direct current stimulation to facilitate post-stroke overground gait performance in chronic stroke: a partial least-squares regression approach. J NeuroEng Rehabil. 2021;18:18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guell X, Schmahmann JD, Gabrieli JD, Ghosh SS. Functional gradients of the cerebellum. Bostan A, Ivry RB, editors. eLife. 2018;7:e36652.

  29. Rezaee Z, Dutta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuromodulation. 2020;23:341–65.

    Article  PubMed  Google Scholar 

  30. Abadi ZRH, Dutta A. Optimizing cerebellar transcranial direct current stimulation for visuomotor learning - anterior versus posterior lobe of cerebellum. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). 2017. p. 428–31.

  31. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59:1560–70.

    Article  PubMed  Google Scholar 

  33. Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020;19:1–5.

    Article  PubMed  Google Scholar 

  34. Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of human balance control: a systematic review. Front Hum Neurosci [Internet]. 2017 [cited 2019 Jun 25];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385364/.

  35. Dutta A. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS. Front Syst Neurosci. 2015;9:107.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS). Neuroscientist. 2016;22:83–97.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992;83(Suppl 2):S7–11.

    PubMed  Google Scholar 

  38. Fillmore PT, Phillips-Meek MC, Richards JE. Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age. Front Aging Neurosci [Internet]. 2015 [cited 2020 Sep 9];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389545/.

  39. Huang Y, Datta A, Bikson M, Parra LC. ROAST: an open-source, fully-automated, realistic volumetric-approach-based simulator for TES. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:3072–5.

    Google Scholar 

  40. SPM - Statistical Parametric Mapping [Internet]. [cited 2018 Jun 16]. Available from: http://www.fil.ion.ucl.ac.uk/spm/.

  41. Fang Q, Boas DA. Tetrahedral mesh generation from volumetric binary and grayscale images. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009. p. 1142–5.

  42. Dular P, Geuzaine C, Henrotte F, Legros W. A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans Magn. 1998;34:3395–8.

    Article  Google Scholar 

  43. Windhoff M, Opitz A, Thielscher A. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp. 2013;34:923–35.

    Article  PubMed  Google Scholar 

  44. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.

    Article  PubMed  Google Scholar 

  45. Geng S, Liu X, Biswal BB, Niu H. Effect of resting-state fNIRS scanning duration on functional brain connectivity and graph theory metrics of brain network. Front Neurosci [Internet]. Frontiers; 2017 [cited 2021 Jan 30];11. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2017.00392/full.

  46. Othman MH, Bhattacharya M, Møller K, Kjeldsen S, Grand J, Kjaergaard J, et al. Resting-state NIRS-EEG in unresponsive patients with acute brain injury: a proof-of-concept study. Neurocrit Care. 2020. https://doi.org/10.1007/s12028-020-00971-x.

  47. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Angulo-Sherman IN, Rodríguez-Ugarte M, Sciacca N, Iáñez E, Azorín JM. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power. J NeuroEng Rehabil. 2017;14:31.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aasted CM, Yücel MA, Cooper RJ, Dubb J, Tsuzuki D, Becerra L, et al. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics [Internet]. 2015 [cited 2020 Apr 18];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478785/.

  50. Pinti P, Merla A, Aichelburg C, Lind F, Power S, Swingler E, et al. A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments. Neuroimage. 2017;155:291–304.

    Article  PubMed  Google Scholar 

  51. Chang C-Y, Hsu S-H, Pion-Tonachini L, Jung T-P. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans Biomed Eng. 2020;67:1114–21.

    Article  PubMed  Google Scholar 

  52. Hsu S-H, Pion-Tonachini L, Palmer J, Miyakoshi M, Makeig S, Jung T-P. Modeling brain dynamic state changes with adaptive mixture independent component analysis. Neuroimage. 2018;183:47–61.

    Article  PubMed  Google Scholar 

  53. Pion-Tonachini L, Kreutz-Delgado K, Makeig S. The ICLabel dataset of electroencephalographic (EEG) independent component (IC) features. Data Brief. 2019;25:104101.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chaumon M, Bishop DVM, Busch NA. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods. 2015;250:47–63.

    Article  PubMed  Google Scholar 

  55. Tachtsidis I, Scholkmann F. False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics [Internet]. 2016 [cited 2019 Sep 29];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791590/.

  56. Pollonini L, Bortfeld H, Oghalai JS. PHOEBE: a method for real time mapping of optodes-scalp coupling in functional near-infrared spectroscopy. Biomed Opt Express. 2016;7:5104–19.

    Article  PubMed  PubMed Central  Google Scholar 

  57. von Lühmann A, Li X, Müller K-R, Boas DA, Yücel MA. Improved physiological noise regression in fNIRS: a multimodal extension of the general linear model using temporally embedded canonical correlation analysis. NeuroImage. 2020;208:116472.

    Article  Google Scholar 

  58. Zhang Y, Brooks DH, Franceschini MA, Boas DA. Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. J Biomed Opt. 2005;10:11014.

    Article  PubMed  Google Scholar 

  59. Tan Q, Zhang M, Wang Y, Zhang M, Wang Y, Xin Q, et al. Frequency-specific functional connectivity revealed by wavelet-based coherence analysis in elderly subjects with cerebral infarction using NIRS method. Med Phys. 2015;42:5391–403.

    Article  PubMed  Google Scholar 

  60. Alkire MT. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology. 1998;89:323–33.

    Article  CAS  PubMed  Google Scholar 

  61. Zadikoff C, Lang AE. Apraxia in movement disorders. Brain. 2005;128:1480–97.

    Article  PubMed  Google Scholar 

  62. Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF. The many facets of motor learning and their relevance for Parkinson’s disease. Clin Neurophysiol. 2017;128:1127–41.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vandaele Y, Mahajan NR, Ottenheimer DJ, Richard JM, Mysore SP, Janak PH. Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. Wassum KM, Uchida N, Uchida N, Robbe D, editors. eLife. 2019;8:e49536.

  64. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    Article  CAS  PubMed  Google Scholar 

  65. Dutta A, Lahiri U, Das A, Nitsche MA, Guiraud D. Post-stroke balance rehabilitation under multi-level electrotherapy: a conceptual review. Front Neurosci [Internet]. 2014 [cited 2018 Jun 20];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266025/.

  66. Friston KJ, Frith CD, Passingham RE, Liddle PF, Frackowiak RSJ. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc R Soc Lond Ser B Biol Sci R Soc. 1992;248:223–8.

    Article  CAS  Google Scholar 

  67. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci (Regul Ed). 2013;17:241–54.

    Article  Google Scholar 

  68. Dutta A, Dutta A. Using electromagnetic reciprocity and magnetic resonance current density imaging to fit multi-electrode montage for non-invasive brain stimulation. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). 2013. p. 447–51.

  69. Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015;14:171–4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Keles HO, Barbour RL, Omurtag A. Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS. Neuroimage. 2016;138:76–87.

    Article  PubMed  Google Scholar 

  71. Pezzetta R, Nicolardi V, Tidoni E, Aglioti SM. Error, rather than its probability, elicits specific electrocortical signatures: a combined EEG-immersive virtual reality study of action observation. J Neurophysiol. 2018;120:1107–18.

    Article  PubMed  Google Scholar 

  72. Galea JM, Vazquez A, Pasricha N, Orban de Xivry J-J, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21:1761–70.

    Article  PubMed  Google Scholar 

  73. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guell X, D’Mello AM, Hubbard NA, Romeo RR, Gabrieli JDE, Whitfield-Gabrieli S, et al. Functional territories of human dentate nucleus. Cereb Cortex [Internet]. [cited 2020 Mar 7]; Available from: https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhz247/5614447.

  75. Spampinato DA, Satar Z, Rothwell JC. Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings. Brain Stimul. 2019;12:1205–12.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bernard JA, Orr JM, Mittal VA. Differential motor and prefrontal cerebello-cortical network development: evidence from multimodal neuroimaging. NeuroImage. 2016;124:591–601.

    Article  PubMed  Google Scholar 

  77. Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol. 2014;592:4115–28.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87.

    Article  PubMed  Google Scholar 

  79. Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17:228–36.

    Article  PubMed  Google Scholar 

  80. Hanna-Pladdy B, Heilman KM, Foundas AL. Cortical and subcortical contributions to ideomotor apraxia: analysis of task demands and error types. Brain. 2001;124:2513–27.

    Article  CAS  PubMed  Google Scholar 

  81. Jalali R, Miall RC, Galea JM. No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation. J Neurophysiol. 2017;118:655–65.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: primary motor cortex versus cerebellar stimulation. Brain Stimul. 2018;11:1239–50.

    Article  PubMed  Google Scholar 

  83. Sato T, Nambu I, Takeda K, Aihara T, Yamashita O, Isogaya Y, et al. Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. NeuroImage. 2016;141:120–32.

    Article  PubMed  Google Scholar 

  84. Gagnon L, Cooper RJ, Yücel MA, Perdue KL, Greve DN, Boas DA. Short separation channel location impacts the performance of short channel regression in NIRS. Neuroimage. 2012;59:2518–28.

    Article  PubMed  Google Scholar 

  85. Pagano R, Libertino S, Sanfilippo D, Fallica G, Lombardo S. Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers. Biomed Opt Express. 2016;7:1183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dutta A, Nitsche WP and MA. Translational methods for non-invasive electrical stimulation to facilitate gait rehabilitation following stroke - the future directions [Internet]. Neuroscience and Biomedical Engineering (Discontinued). 2013 [cited 2020 Sep 9]. p. 22–33. Available from: https://www.eurekaselect.com/109867/article.

Download references

Acknowledgements

The authors would like to acknowledge the technical support from Brandon Ruszala for the development of the CLOS pipeline and the clinical support from Surbhi Kaura for the MRIs and the stroke study at the All India Institute of Medical Sciences, New Delhi, India. Deepesh Kumar conducted initial technology development and experimental validation of the VBaT platform during his doctoral research at the Indian Institute of Technology Gandhinagar, India.

Funding

Authors acknowledge the initial funding (2014−2017) by the Department of Science and Technology (DST), India and Institut National de Recherche en Informatique et en Automatique (Inria), France—https://team.inria.fr/nphys4nrehab/. This research is currently funded by the Indian Ministry of Human Resource Development (MHRD)’s Scheme for Promotion of Academic and Research Collaboration (SPARC), grant number 2018−2019/P721/SL, and Indian Department of Health Research, Project Code No. N1761.

Author information

Authors and Affiliations

Authors

Contributions

Neuroimaging in conjunction with non-invasive brain stimulation study conceptualization and design, A.D. (Anirban Dutta); Virtual reality-based balance training conceptualization and design, U.L. (Uttama Lahiri); Methodology, Z.R. (Zeynab Rezaee), D.S. (Dhaval Solanki), S.R. (Shashi Ranjan), A.D., and U.L.; Software development and application, Z.R., D.S., M.B. (Mahasweta Bhattacharya); Investigation, Z.R., D.S., and S.R.; Resources, A.D. (Anirban Dutta), U.L., and M.V.P.S. (MV Padma Srivastava); Data curation, Z.R., D.S., and S.R.; Writing—original draft preparation, Z.R., D.S., A.D., and U.L.; Writing—review and editing, A.D., U.L., and M.V.P.S.; Supervision, A.D., and U.L.; Project administration, A.D., U.L., and M.V.P.S; Funding acquisition, A.D., U.L., and M.V.P.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anirban Dutta.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zeynab Rezaee and Shashi Ranjan are equal first authors.

Uttama Lahiri and Anirban Dutta are equal last authors.

Supplementary Information

ESM 1

(DOCX 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, Z., Ranjan, S., Solanki, D. et al. Feasibility of combining functional near-infrared spectroscopy with electroencephalography to identify chronic stroke responders to cerebellar transcranial direct current stimulation—a computational modeling and portable neuroimaging methodological study. Cerebellum 20, 853–871 (2021). https://doi.org/10.1007/s12311-021-01249-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01249-4

Keywords

Navigation