Skip to main content

Advertisement

Log in

Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12–13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hazell AS, Butterworth RF. Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol. 2009;44(2):141–7.

    CAS  PubMed  Google Scholar 

  2. Mulholland P. Susceptibility of the cerebellum to thiamine deficiency. Cerebellum. 2006;5(1):55–63.

    CAS  PubMed  Google Scholar 

  3. Bettendorff L, Kolb HA, Schoffeniels E. Thiamine triphosphate activates an anion channel of large unit conductance in neuroblastoma cells. J Membr Biol. 1993;136(3):281–8.

    CAS  PubMed  Google Scholar 

  4. Houzen H, Kanno M. Thiamine and its derivatives inhibit delayed rectifier potassium channels of rat cultured cortical neurons. Neuropharmacology. 1998;37(3):313–22.

    CAS  PubMed  Google Scholar 

  5. Gangolf M, Wins P, Thiry M, El Moualij B, Bettendorff L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J Biol Chem. 2010;285(1):583–94.

    CAS  PubMed  Google Scholar 

  6. Mastrogiacomo F, Bettendorff L, Grisar T, Kish SJ. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer’s disease. Ann Neurol. 1996;39(5):585–91.

    Google Scholar 

  7. Vinh Quc Lu’O’Ng K, Nguyen LTH. Role of thiamine in Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2011;26(8):588–98.

    Google Scholar 

  8. Yu Q, Liu H, Sang S, Chen L, Zhao Y, Wang Y, et al. Thiamine deficiency contributes to synapse and neural circuit defects. Biol Res. 2018;51(1):1–9.

    CAS  Google Scholar 

  9. Bubko I, Gruber BM, Anuszewska EL. The role of thiamine in neurodegenerative diseases. Postepy Higieny i Medycyny Doswiadczalnej (Online). 2015;69:1096–106.

    Google Scholar 

  10. Andersen BB. Reduction of Purkinje cell volume in cerebellum of alcoholics. Brain Res. 2004;1007(1–2):10–8.

    CAS  PubMed  Google Scholar 

  11. Butterworth RF. Cerebral thiamine-dependent enzyme changes in experimental Wernicke’s encephalopathy. Metab Brain Dis. 1986;1(3):165–75.

    CAS  PubMed  Google Scholar 

  12. Ferreira-Vieira TH, de Freitas-Silva DM, Ribeiro AF, Pereira SRC, Ribeiro ÂM. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring. Neurosci Lett. 2016;617:182–7.

    CAS  PubMed  Google Scholar 

  13. Deverett B, Kislin M, Tank DW, Wang SSH. Cerebellar disruption impairs working memory during evidence accumulation. Nat Commun. 2019;10(1):1–7.

    CAS  Google Scholar 

  14. Mavroudis I, Petridis F, Kazis D, Njau SN, Costa V, Baloyannis SJ. Purkinje cells pathology in Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2019;34(7–8):439–49.

    Google Scholar 

  15. Irle E, Markowitsch HJ. Widespread neuroanatomical damage and learning deficits following chronic alcohol consumption or vitamin-B1 (thiamine) deficiency in rats. Behav Brain Res. 1983;9(3):277–94.

    CAS  PubMed  Google Scholar 

  16. Cruz JS, Kushmerick C, Moreira-Lobo DC, Oliveira FA. Thiamine deficiency in vitro accelerates A-type potassium current inactivation in cerebellar granule neurons. Neuroscience. 2012;221:108–14.

    CAS  PubMed  Google Scholar 

  17. Oliveira FA, Galan DT, Ribeiro AM, Cruz JS. Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels. Brain Res. 2007;1134:79–86.

    CAS  PubMed  Google Scholar 

  18. Moreira-Lobo DC, Cruz JS, Silva FR, Ribeiro FM, Kushmerick C, Oliveira FA. Thiamine deficiency increases Ca2+ current and CaV1.2 L-type Ca2+ channel levels in cerebellum granular neurons. Cell Mol Neurobiol. 2017;37(3):453–60.

    CAS  PubMed  Google Scholar 

  19. Lee RS, Strahlendorf HK, Strahlendorf JC. Enhanced sensitivity of cerebellar Purkinje cells to iontophoretically-applied serotonin in thiamine deficiency. Brain Res. 1985;327(1–2):249–58.

    CAS  PubMed  Google Scholar 

  20. Bowyer JF, Tranter KM, Sarkar S, Hanig JP. Microglial activation and vascular responses that are associated with early thalamic neurodegeneration resulting from thiamine deficiency. NeuroToxicology. 2018;65:98–110.

    CAS  PubMed  Google Scholar 

  21. Inaba H, Kishimoto T, Oishi S, Nagata K, Hasegawa S, Watanabe T, et al. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome. Biosci Biotechnol Biochem. 2016;80(12):2425–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Watanabe I. Pyrithiamine-induced acute thiamine-deficient encephalopathy in the mouse. Exp Mol Pathol. 1978;28(3):381–94.

    CAS  PubMed  Google Scholar 

  23. Murdock DS, Gubler CJ. Effects of thiamine deficiency and treatment with the antagonists, oxythiamine and PYRI-thiamine, on the levels and distribution of thiamine derivatives in rat brain. J Nutr Sci Vitaminol. 1973;19(3):237–49.

    CAS  PubMed  Google Scholar 

  24. Butterworth RF, Hamel E, Landreville F, Barbeau A. Amino acid changes in thiamine-deficient encephalopathy: some implications for the pathogenesis of Friedreich’s ataxia. Can J Neurol Sci. 1979;6(2):217–22.

    CAS  PubMed  Google Scholar 

  25. Jolicoeur FB, Rondeau DB, Hamel E, Butterworth RF, Barbeau A. Measurement of ataxia and related neurological signs in the laboratory rat. Can J Neurol Sci. 1979;6(2):209–15.

    CAS  PubMed  Google Scholar 

  26. Shi Q, Karuppagounder S, Xu H, Pechman D, Chen H, Gibson G. Responses of the mitochondrial alpha-ketoglutarate dehydrogenase complex to thiamine deficiency may contribute to regional selective vulnerability. Neurochem Int. 2007;50(7–8):921–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vetreno RP, Ramos RL, Anzalone S, Savage LM. Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke–Korsakoff syndrome. Brain Res. 2012;1436:178–92.

    CAS  PubMed  Google Scholar 

  28. Zhang S, Henderson S, Corso T. Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. J Neuropath Experiment Exp Neurol. 1995;54(2):255–67.

    CAS  Google Scholar 

  29. Edgerton JR, Reinhart PH. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol. 2003;548(1):53–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu M, Alimov AP, Wang H, Frank JA, Katz W, Xu M, et al. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience. 2014;267:102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Light KE, Hayar AM, Pierce DR. Electrophysiological and immunohistochemical evidence for an increase in GABAergic inputs and HCN channels in Purkinje cells that survive developmental ethanol exposure. Cerebellum. 2015;14(4):398–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.

    CAS  PubMed  Google Scholar 

  33. De Zeeuw CI, Chris I, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12(6):327–44.

    CAS  PubMed  Google Scholar 

  34. Shakkottai VG, do Carmo Costa M, Dell’Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci. 2011;31(36):13002–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Llinás RR. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective. Front Cell Neurosci. 2014;4(8):320. https://doi.org/10.3389/fncel.2014.00320.

    Article  Google Scholar 

  36. Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, et al. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci. 2010;30(41):13630–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Benton MD, Lewis AH, Bant JS, Raman IM. Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. J Neurophysiol. 2013;109(10):2528–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cingolani LA, Gymnopoulos M, Boccaccio A, Stocker M, Pedarzani P. Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J Neurosci. 2002;22(11):4456–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gähwiler BH, Llano I. Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. J Physiol. 1989;417(1):105–22.

    PubMed  PubMed Central  Google Scholar 

  40. Gruol DL, Dionne VE, Yool AJ. Multiple voltage-sensitive K+ channels regulate dendritic excitability in cerebellar Purkinje neurons. Neurosci Lett. 1989;97(1–2):97–102.

    CAS  PubMed  Google Scholar 

  41. Gruol DL, Jacquin T, Yool AJ. Single-channel K+ currents recorded from the somatic and dendritic regions of cerebellar Purkinje neurons in culture. J Neurosci. 1991;11(4):1002–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci U S A. 2004;101(25):9474–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Womack MD, Khodakhah K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J Neurosci. 2003;23(7):2600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sacco T, Tempia F. A-type potassium currents active at subthreshold potentials in mouse cerebellar Purkinje cells. J Physiol. 2002;543(2):505–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schreurs BG. Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning. Neurobiol Learn Mem. 2019;166(September):107094.

    PubMed  PubMed Central  Google Scholar 

  46. Grasselli G, He Q, Wan V, Adelman JP, Ohtsuki G, Hansel C. Activity-dependent plasticity of spike pauses in cerebellar Purkinje cells. Cell Rep. 2016;14(11):2546–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grasselli G, Boele HJ, Titley HK, Bradford N, van Beers L, Jay L, et al. SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces. PLoS Biol. 2020;18(1):1–29.

    Google Scholar 

  48. Adelman JP, Maylie J, Sah P. Small-conductance Ca 2+-activated K + channels: form and function. Annu Rev Physiol. 2012;74(1):245–69.

    CAS  PubMed  Google Scholar 

  49. Zhou H, Lin Z, Voges K, Chiheng J, Gao Z, Bosman LWJ, et al. Cerebellar modules operate at different frequencies. ELife. 2014;2014(3):1–18.

    Google Scholar 

  50. Wu B, Blot FGC, Wong AB, Osório C, Adolfs Y, Pasterkamp RJ, et al. TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife. 2019;8:1–31.

    Google Scholar 

  51. Xiao J, Cerminara NL, Kotsurovskyy Y, Aoki H, Burroughs A, Wise AK, et al. Systematic regional variations in Purkinje cell spiking patterns. PLoS One. 2014;9(8):e105633. https://doi.org/10.1371/journal.pone.0105633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fox EA, Gruol DL. Corticotropin-releasing factor suppresses the afterhyperpolarization in cerebellar Purkinje neurons. Neurosci Lett. 1993;149(1):103–7.

    CAS  PubMed  Google Scholar 

  53. Butterworth RF. Pathophysiology of cerebellar dysfunction in the Wernicke-Korsakoff syndrome. Can J Neurol Sci. 1993;20(SUPPL. 3):123–6.

    Google Scholar 

  54. Ohtsuki G, Piochon C, Adelman JP, Hansel C. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron. 2012;75(1):108–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Titley HK, Watkins GV, Lin C, Weiss C, McCarthy M, Disterhoft JF, et al. Intrinsic excitability increase in cerebellar Purkinje cells after delay eye-blink conditioning in mice. J Neurosci. 2020;40(10):2038–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang D, Schreurs BG. Characteristics of IA currents in adult rabbit cerebellar Purkinje cells. Brain Res. 2006;1096(1):85–96.

    CAS  PubMed  Google Scholar 

  57. Hu C-L, Zeng X-M, Zhou M-H, Shi Y-T, Cao H, Mei Y-A. Kv 1.1 is associated with neuronal apoptosis and modulated by protein kinase C in the rat cerebellar granule cell. J Neurochem. 2008;106(3):1125–37.

    CAS  PubMed  Google Scholar 

  58. Lefebvre T, Gonzalez BJ, Vaudry D, Desrues L, Falluel-Morel A, Aubert N, et al. Paradoxical effect of ethanol on potassium channel currents and cell survival in cerebellar granule neurons. J Neurochem. 2009;110(3):976–89.

    CAS  PubMed  Google Scholar 

  59. Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. Cerebellum. 2012;11(1):145–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cooper JR, Pincus JH. The role of thiamine in nervous tissue. Neurochem Res. 1979;4(2):223–39.

    CAS  PubMed  Google Scholar 

  61. Brin M. Effects of thiamine deficiency and of oxythiamine on rat tissue transketolase. J Nutr. 1962;78(2):179–83.

    CAS  PubMed  Google Scholar 

  62. Klooster A, Larkin JR, Wiersema-Buist J, Reinold OB, Gans PJ, Thornalley GN, et al. Are brain and heart tissue prone to the development of thiamine deficiency? Alcohol. 2013;47(3):215–21.

    CAS  PubMed  Google Scholar 

  63. Savage LM, Hall JM, Resende LS (2012) Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. 195–209.

  64. Dias FMV, de Freitas Silva DM, de Proença Doyle FC, Ribeiro AM. The connection between maternal thiamine shortcoming and offspring cognitive damage and poverty perpetuation in underprivileged communities across the world. Med Hypotheses. 2013;80(1):13–6.

    PubMed  Google Scholar 

  65. Johnson CR, Fischer PR, Thacher TD, Topazian MD, Bourassa MW, Combs GF. Thiamin deficiency in low- and middle-income countries: disorders, prevalences, previous interventions and current recommendations. Nutr Health. 2019;25(2):127–51.

    CAS  PubMed  Google Scholar 

  66. Iimura Y, Kurokawa T, Nojima M, Kanemoto Y, Yazawa K, Tsurita G, et al. Potential thiamine deficiency and neurological symptoms in patients receiving chemotherapy for gastrointestinal cancer. Int J Clin Pharmacol Therapeut. 2020;58(03):139–45.

    CAS  Google Scholar 

  67. Baker KG, Harding AJ, Halliday GM, Kril JJ, Harper CG. Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke’s encephalopathy. Neuroscience. 1999;91(2):429–38.

    CAS  PubMed  Google Scholar 

  68. Kloss O, Michael Eskin NA, Suh M. Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure. Biochem Cell Biol. 2018;96(2):169–77.

    CAS  PubMed  Google Scholar 

  69. Nunes PT, Gómez-Mendoza DP, Rezende CP, Figueiredo HCP, Ribeiro AM. Thalamic proteome changes and behavioral impairments in thiamine-deficient rats. Neuroscience. 2018;385:181–97.

    CAS  PubMed  Google Scholar 

  70. Jin XH, Wang HW, Zhang XY, Chu CP, Jin YZ, Cui SB, Qiu DL. Mechanisms of spontaneous climbing fiber discharge-evoked pauses and output modulation of cerebellar Purkinje cell in mice. Front Cell Neurosci. 2017;11:247. https://doi.org/10.3389/fncel.2017.00247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Larsen JO, Tandrup T, Brændgaard H. The volume of Purkinje cells decreases in the cerebellum of acrylamide? Intoxicated rats, but no cells are lost. Acta Neuropathol. 1994;88(4):307–12.

    CAS  Google Scholar 

  72. Jaatinen P, Rintala J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. Cerebellum. 2008;7(3):332–47.

    CAS  PubMed  Google Scholar 

  73. Gluber C. Studies on the physiological functions of thiamine. I. The effects of thiamine deficiency and thiamine antagonists on the oxidation of alphaketo acids by rat tissues . J Biol Chem. 1961;236:3112–20.

  74. Rindi G, Imarisio L, Patrini C. Effects of acute and chronic ethanol administration on regional thiamin pyrophosphokinase activity of the rat brain. Biochem Pharmacol. 1986;35(22):3903–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gabriel Henrique Campolina Silva, Samuel Tadeu Rocha, and CAPI-UFMG for assistance with imaging and image analysis and Rogério de Freitas Lacerda and Mariana Elena Jacobsen for assistance with developing the thiamine deficiency protocol in mice. We thank Court Hull and Jacques I Wadiche for comments on an earlier version of the manuscript.

Funding

This study was funded by FAPEMIG (grant number APQ-02013-15) and CNPq (grant number 301798/2019-2) awarded to Christopher Kushmerick. Ivonne Carolina Bolaños-Burgos and Ana María Bernal Correa were funded by graduate student fellowships from CAPES-PROEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Kushmerick.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolaños-Burgos, I.C., Bernal-Correa, A.M., Mahecha, G.A.B. et al. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. Cerebellum 20, 186–202 (2021). https://doi.org/10.1007/s12311-020-01202-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01202-x

Keywords

Navigation