Skip to main content
Log in

GIRK1-Mediated Inwardly Rectifying Potassium Current Is a Candidate Mechanism Behind Purkinje Cell Excitability, Plasticity, and Neuromodulation

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

G-protein-coupled inwardly rectifying potassium (GIRK) channels contribute to the resting membrane potential of many neurons and play an important role in controlling neuronal excitability. Although previous studies have revealed a high expression of GIRK subunits in the cerebellum, their functional role has never been clearly described. Using patch-clamp recordings in mice cerebellar slices, we examined the properties of the GIRK currents in Purkinje cells (PCs) and investigated the effects of a selective agonist of GIRK1-containing channels, ML297 (ML), on PC firing and synaptic plasticity. We demonstrated that GIRK channel activation decreases the PC excitability by inhibiting both sodium and calcium spikes and, in addition, modulates the complex spike response evoked by climbing fiber stimulation. Our results indicate that GIRK channels have also a marked effect on synaptic plasticity of the parallel fiber-PC synapse, as the application of ML297 increased the expression of LTP while preventing LTD. We, therefore, propose that the recruitment of GIRK channels represents a crucial mechanism by which neuromodulators can control synaptic strength and membrane conductance for proper refinement of the neural network involved in memory storage and higher cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GIRK:

G-protein-coupled inwardly rectifying potassium

CF:

Climbing fiber

LTD:

Long-term depression

LTP:

Long-term potentiation

EPSP:

Excitatory postsynaptic potential

PC:

Purkinje cell

References

  1. Karschin C, Dissmann E, Stuhmer W, Karschin A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci. 1996;16:3559–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron. 1997;19:687–95.

    PubMed  Google Scholar 

  3. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291–366.

    CAS  PubMed  Google Scholar 

  4. Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther. 2013;140:112–20.

    CAS  PubMed  Google Scholar 

  5. Lüscher C, Slesinger PA. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci. 2010;11:301–15.

    PubMed  PubMed Central  Google Scholar 

  6. Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K. New insights into the therapeutic potential of Girk channels. Trends Neurosci. 2014;37:20–9.

    PubMed  Google Scholar 

  7. Takigawa T, Alzheimer C. G protein-activated inwardly rectifying K+ (GIRK) currents in dendrites of rat neocortical pyramidal cells. J Physiol Lond. 1999;517:385–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Malik R, Johnston D. Dendritic GIRK channels gate the integration window, plateau potentials, and induction of synaptic plasticity in dorsal but not ventral CA1 neurons. J Neurosci. 2017;37:3940–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    CAS  PubMed  Google Scholar 

  10. Aguado C, Colón J, Ciruela F, Schlaudraff F, Cabañero MJ, Perry C, et al. Cell type-specific subunit composition of G protein-gated potassium channels in the cere- bellum. J Neurochem. 2008;105:497–511.

    CAS  PubMed  Google Scholar 

  11. Fernández-Alacid L, Aguado C, Ciruela F, Martín R, Colón J, Cabañero MJ, et al. Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells. J Neurochem. 2009;110:1363–76.

    PubMed  PubMed Central  Google Scholar 

  12. Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, plasticity and pathophysiology of the parallel fiber-purkinje cell synapse. Front Synaptic Neurosci. 2016;8:35.

    PubMed  PubMed Central  Google Scholar 

  13. Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, refinement, and serotonergic modulation of cerebellar cortical circuits in normal development and in murine models of autism. Neural Plast. 2017;6595740.

  14. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:116.

    PubMed  PubMed Central  Google Scholar 

  15. Llinás R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol. 1980;305:171–95.

    PubMed  PubMed Central  Google Scholar 

  16. Häusser M, Clark BA. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 1997;19:665–78.

    PubMed  Google Scholar 

  17. Masoli S, Solinas S, D’Angelo E. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front Cell Neurosci. 2015;9:47.

    PubMed  PubMed Central  Google Scholar 

  18. Sacco T, De Luca A, Tempia F. Properties and expression of Kv3 channels in cerebellar Purkinje cells. Mol Cell Neurosci. 2006;33:170–9.

    CAS  PubMed  Google Scholar 

  19. Boda E, Hoxha E, Pini A, Montarolo F, Tempia F. Brain expression of Kv3 subunits during development, adulthood and aging and in a murine model of Alzheimer’s disease. J Mol Neurosci. 2012;46:606–15.

    CAS  PubMed  Google Scholar 

  20. Hoxha E, Balbo I, Miniaci MC, Tempia F. Purkinje cell signaling deficits in animal models of ataxia. Front Synaptic Neurosci. 2018;10:6.

    PubMed  PubMed Central  Google Scholar 

  21. Wydeven N, Marron Fernandez de Velasco E, Du Y, Benneyworth MA, Hearing MC, Fischer RA, et al. Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Proc Natl Acad Sci U S A. 2014;111:10755–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lippiello P, Hoxha E, Speranza L, Volpicelli F, Ferraro A, Leopoldo M, et al. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacology. 2016;101:426–38.

    CAS  PubMed  Google Scholar 

  23. Hoxha E, Boda E, Montarolo F, Parolisi R, Tempia F. Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. PLoS One. 2012;7:e34726.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lippiello P, Hoxha E, Volpicelli F, Lo Duca G, Tempia F, Miniaci MC. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology. 2015;89:33–42.

    CAS  PubMed  Google Scholar 

  25. Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, et al. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci. 1999;2:1091–7.

    CAS  PubMed  Google Scholar 

  26. Tabata T, Haruki S, Nakayama H, Kano M. GABAergic activation of an inwardly rectifying K+ current in mouse cerebellar Purkinje cells. J Physiol. 2005;563:443–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sacco T, Tempia F. A-type potassium currents active at subthreshold potentials in mouse cerebellar Purkinje cells. J Physiol. 2002;543:505–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Crepel F, Dupont JL, Gardette R. Selective absence of calcium spikes in Purkinje cells of staggerer mutant mice in cerebellar slices maintained in vitro. J Physiol. 1984;346:111–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmolesky MT, De Zeeuw CI, Hansel C. Climbing fiber synaptic plasticity and modifications in Purkinje cell excitability. Prog Brain Res. 2005;148:81–94.

    PubMed  Google Scholar 

  30. Russo R, Cattaneo F, Lippiello P, Cristiano C, Zurlo F, Castaldo M, et al. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol Aging. 2018;68:123–33.

    CAS  PubMed  Google Scholar 

  31. Hoxha E, Lippiello P, Zurlo F, Balbo I, Santamaria R, Tempia F, et al. The emerging role of altered cerebellar synaptic processing in Alzheimer's disease. Front Aging Neurosci. 2018;10:396.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Titley HK, Kislin M, Simmons DH, Wang SS, Hansel C. Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule. J Physiol. 2019;597:4387–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirono M, Sugiyama T, Kishimoto Y, Sakai I, Miyazawa T, Kishio M, et al. Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase CbetaI are involved in the induction of long-term depression in cerebellar Purkinje cells. J Biol Chem. 2001;276:45236–42.

    CAS  PubMed  Google Scholar 

  34. Wang X, Chen G, Gao W, Ebner T. Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo. Neuroscience. 2009;162:713–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Linden D. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci. 2003;4:885–900.

    CAS  PubMed  Google Scholar 

  36. Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, et al. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci. 2010;30:13630–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Edgerton JR, Reinhart PH. Distinct contributions of small and large conductance Ca2+−activated K+ channels to rat Purkinje neuron function. J Physiol. 2003;548:53–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zagha E, Manita S, Ross WN, Rudy B. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes. J Neurophysiol. 2010;103:3516–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sacco T, Bruno A, Wanke E, Tempia F. Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol. 2003;90:1817–28.

    PubMed  Google Scholar 

  40. Khavandgar S, Walter JT, Sageser K, Khodakhah K. Kv1 channels selectively prevent dendritic hyperexcitability in rat Purkinje cells. J Physiol. 2005;569:545–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Benton MD, Lewis AH, Bant JS, Raman IM. Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. J Neurophysiol. 2013;109:2528–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Womack MD, Chevez C, Khodakhah K. Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons. J Neurosci. 2004;24:8818–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Davie JT, Clark BA, Häusser M. The origin of the complex spike in cerebellar Purkinje cells. J Neurosci. 2008;28:7599–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Titley HK, Watkins GV, Lin C, Weiss C, McCarthy M, Disterhoft JF, et al. Intrinsic excitability increase in cerebellar Purkinje cells after delay eye-blink conditioning in mice. J Neurosci. 2020;40:2038–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Konnerth A, Dreessen J, Augustine GJ. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 1992;89:7051–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J Neurophysiol. 1992;68:1178–89.

    CAS  PubMed  Google Scholar 

  47. Wang SS, Denk W, Hausser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.

    CAS  PubMed  Google Scholar 

  48. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    CAS  PubMed  Google Scholar 

  49. Tabata T, Kano M. GABA(B) receptor-mediated modulation of glutamate signaling in cerebellar Purkinje cells. Cerebellum. 2006;5:127–33.

    CAS  PubMed  Google Scholar 

  50. Kamikubo Y, Tabata T, Kakizawa S, Kawakami D, Watanabe M, Ogura A, et al. Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. J Physiol. 2007;585:549–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Carta M, Mameli M, Valenzuela C. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci. 2004;24:3746–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. He Q, Titley H, Grasselli G, Piochon C, Hansel C. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD. J Neurophysiol. 2013;109:1333–42.

    CAS  PubMed  Google Scholar 

  53. Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44:103–16.

    PubMed  Google Scholar 

  54. Ito HT, Schuman EM. Frequency-dependent signal transmission and modulation by neuromodulators. Front Neurosci. 2008;2:138–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kupfermann I. Functional studies of cotransmission. Physiol Rev. 1991;71:683–732.

    CAS  PubMed  Google Scholar 

  56. Brezina V, Weiss KR. Analyzing the functional consequences of transmitter complexity. Trends Neurosci. 1997;20:538–43.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from Regione Campania—POR Campania FESR 2014/2020 (Project No. B61G18000470007) to M.C.M., by a grant of the University of Torino (Local Research Grant, FY 2018) to F.T., and by a donation in memory of Achille Barbetta. P.L. was supported by the Department of Pharmacy fellowship, funded by MIUR Department of excellence grant.

Author information

Authors and Affiliations

Authors

Contributions

Collection, analysis, and interpretation of data: P.L, E.H, F.T, and M.C.M. Drafting manuscript and graphical representation of data: P.L and E.H. Critical evaluation of manuscript: F.T and M.C.M. All authors have read and approved the final version of this manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding authors

Correspondence to Filippo Tempia or Maria Concetta Miniaci.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 9481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lippiello, P., Hoxha, E., Tempia, F. et al. GIRK1-Mediated Inwardly Rectifying Potassium Current Is a Candidate Mechanism Behind Purkinje Cell Excitability, Plasticity, and Neuromodulation. Cerebellum 19, 751–761 (2020). https://doi.org/10.1007/s12311-020-01158-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01158-y

Keywords

Navigation