Skip to main content
Log in

Chromosomal Microarray Analysis Has a Poor Diagnostic Yield in Children with Developmental Delay/Intellectual Disability When Concurrent Cerebellar Anomalies Are Present

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Chromosomal microarray analysis is commonly used as screening test for children with neurodevelopmental issues, also in case of complex neurological phenotypes. Developmental delay/intellectual disability is a common presentation sign in pediatric ataxias, diseases with high clinical and genetic heterogeneity. In order to determine the diagnostic yield of Array-CGH in such conditions, all the tests performed in the last 10-year activity of a single referral center in children who present, besides the neurodevelopmental impairment, cerebellar abnormalities have been systematically gathered. The study demonstrates that, except for Dandy-Walker malformation or poly-malformative phenotypes, chromosomal microarray analysis should be discouraged as first-line diagnostic test in pediatric ataxias with neurodevelopmental disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol. 2013;17(6):589–99. https://doi.org/10.1016/j.ejpn.2013.04.010.

    Article  PubMed  Google Scholar 

  2. D'Arrigo S, Gavazzi F, Alfei E, Zuffardi O, Montomoli C, Corso B, et al. The diagnostic yield of array comparative genomic hybridization is high regardless of severity of intellectual disability/developmental delay in children. J Child Neurol. 2016;31(6):691–9. https://doi.org/10.1177/0883073815613562.

    Article  PubMed  Google Scholar 

  3. Fan Y, Wu Y, Wang L, Wang Y, Gong Z, Qiu W, et al. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions. BMC Med Genet. 2018;11(1):49. https://doi.org/10.1186/s12920-018-0368-4.

    Article  CAS  Google Scholar 

  4. Lee JS, Hwang H, Kim SY, Kim KJ, Choi JS, Woo MJ, et al. Chromosomal microarray with clinical diagnostic utility in children with developmental delay or intellectual disability. Ann Lab Med. 2018;38(5):473–80. https://doi.org/10.3343/alm.2018.38.5.473.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bartnik M, Nowakowska B, Derwińska K, Wiśniowiecka-Kowalnik B, Kędzior M, Bernaciak J, et al. Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability. J Appl Genet. 2014;55(1):125–44. https://doi.org/10.1007/s13353-013-0181-x.

    Article  CAS  PubMed  Google Scholar 

  6. Hu T, Zhang Z, Wang J, Li Q, Zhu H, Lai Y, et al. Chromosomal aberrations in pediatric patients with developmental delay/intellectual disability: a single-center clinical investigation. Biomed Res Int. 2019;2019:9352581–16. https://doi.org/10.1155/2019/9352581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011 Aug 14;43(9):838–46. https://doi.org/10.1038/ng.909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shoukier M, Klein N, Auber B, Wickert J, Schröder J, Zoll B, et al. Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet. 2013;83(1):53–65. https://doi.org/10.1111/j.1399-0004.2012.01850.x.

    Article  CAS  PubMed  Google Scholar 

  9. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64. https://doi.org/10.1016/j.ajhg.2010.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med. 2018;3:16. https://doi.org/10.1038/s41525-018-0053-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brandsma R, Verschuuren-Bemelmans CC, Amrom D, Barisic N, Baxter P, Bertini E, et al. A clinical diagnostic algorithm for early onset cerebellar ataxia. Eur J Paediatr Neurol. 2019;23(5):692–706. https://doi.org/10.1016/j.ejpn.2019.08.004.

    Article  CAS  PubMed  Google Scholar 

  12. Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, et al. Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res. 2019;47(D1):D1018–27. https://doi.org/10.1093/nar/gky1105.

    Article  CAS  PubMed  Google Scholar 

  13. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST, Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13(7):680–5. https://doi.org/10.1097/GIM.0b013e3182217a3a.

    Article  PubMed  Google Scholar 

  14. Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27(1):1–16. https://doi.org/10.1038/s41431-018-0244-x.

    Article  PubMed  Google Scholar 

  15. Vigdorovich N, Ben-Sira L, Blumkin L, Precel R, Nezer I, Yosovich K, et al. Brain white matter abnormalities associated with copy number variants. Am J Med Genet A. 2020;182(1):93–103. https://doi.org/10.1002/ajmg.a.61389.

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF, Campbell DJ. 5p deletions: current knowledge and future directions. Am J Med Genet C: Semin Med Genet. 2015;169(3):224–38. https://doi.org/10.1002/ajmg.c.31444.

    Article  CAS  Google Scholar 

  17. Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain. 2009;132(Pt 12):3199–230. https://doi.org/10.1093/brain/awp247.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Santoro M, Coi A, Barišić I, Garne E, Addor MC, JEH B, et al. Epidemiology of Dandy-Walker Malformation in Europe: A EUROCAT population-based registry study. Neuroepidemiology. 2019;53(3–4):169–79. https://doi.org/10.1159/000501238.

    Article  PubMed  Google Scholar 

  19. Shimbo H, Yokoi T, Aida N, Mizuno S, Suzumura H, Nagai J, et al. Haploinsufficiency of BCL11A associated with cerebellar abnormalities in 2p15p16.1 deletion syndrome. Mol Genet Genomic Med. 2017;5(4):429–37. https://doi.org/10.1002/mgg3.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsumoto A, Nozaki Y, Minami T, Jimbo EF, Shiraishi H, Yamagata T. 6q21-22 deletion syndrome with interrupted aortic arch. Hum Genome Var. 2015;2:15015. https://doi.org/10.1038/hgv.2015.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferraris A, Bernardini L, Sabolic Avramovska V, Zanni G, Loddo S, Sukarova-Angelovska E, et al. Dandy-Walker malformation and Wisconsin syndrome: novel cases add further insight into the genotype-phenotype correlations of 3q23q25 deletions. Orphanet J Rare Dis. 2013;8:75. https://doi.org/10.1186/1750-1172-8-75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guilherme RS, Kim CA, Alonso LG, Honjo RS, Meloni VA, Christofolini DM, et al. Ring chromosome 10: report on two patients and review of the literature. J Appl Genet. 2013;54(1):35–41. https://doi.org/10.1007/s13353-012-0128-7.

    Article  PubMed  Google Scholar 

  23. Peltekova IT, Hurteau-Millar J, Armour CM. Novel interstitial deletion of 10q24.3-25.1 associated with multiple congenital anomalies including lobar holoprosencephaly, cleft lip and palate, and hypoplastic kidneys. Am J Med Genet A. 2014;164A(12):3132–6. https://doi.org/10.1002/ajmg.a.36740.

    Article  CAS  PubMed  Google Scholar 

  24. Pinchefsky EF, Accogli A, Shevell MI, Saint-Martin C, Srour M. Developmental outcomes in children with congenital cerebellar malformations. Dev Med Child Neurol. 2019;61(3):350–8. https://doi.org/10.1111/dmcn.14059.

    Article  PubMed  Google Scholar 

  25. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moog U, Bierhals T, Brand K, Bautsch J, Biskup S, Brune T, et al. Phenotypic and molecular insights into CASK-related disorders in males. Orphanet J Rare Dis. 2015;10:44. https://doi.org/10.1186/s13023-015-0256-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Madrigal I, Rodríguez-Revenga L, Badenas C, Sánchez A, Milà M. Deletion of the OPHN1 gene detected by aCGH. J Intellect Disabil Res. 2008;52(Pt3):190–4. https://doi.org/10.1111/j.1365-2788.2007.00997.x.

    Article  CAS  PubMed  Google Scholar 

  28. Taghdiri M, Kashef A, Abbassi G, Moshtagh A, Sadatian N, Fardaei M, et al. Further delineation of the phenotype caused by a novel large homozygous deletion of GRID2 gene in an adult patient. Clin Case Rep. 2019;7(6):1149–53. https://doi.org/10.1002/ccr3.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. NDD exome scoping review work group. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21(11):2413–21. https://doi.org/10.1038/s41436-019-0554-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Ciaccio.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciaccio, C., Pantaleoni, C., Bulgheroni, S. et al. Chromosomal Microarray Analysis Has a Poor Diagnostic Yield in Children with Developmental Delay/Intellectual Disability When Concurrent Cerebellar Anomalies Are Present. Cerebellum 19, 629–635 (2020). https://doi.org/10.1007/s12311-020-01145-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01145-3

Keywords

Navigation