Skip to main content
Log in

Cerebellar Cognitive Affective Syndrome in Costa da Morte Ataxia (SCA36)

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

SCA36 is an autosomal dominant spinocerebellar ataxia (SCA) affecting many families from Costa da Morte, a northwestern region of Spain. It is caused by an intronic GGCCTG repeat expansion in NOP56. In order to characterize the cognitive and affective manifestations of this cerebellar disease, a group of 30 SCA36 mutation carriers (11 preataxic and 19 ataxic patients) were assessed with a comprehensive battery of standardized tests. Phonological verbal fluency – but not semantic fluency – was already mildly impaired in preataxic subjects. In ataxic patients, both phonological and semantic fluencies were significantly below normal. Depression, while more frequent and prominent in ataxic patients, was also often present in the preataxic stage. This is the first systematic study supporting the presence of a mild cerebellar cognitive and affective syndrome in SCA36. Routine evaluation of cognitive and emotional spheres in SCA36 patients as well as asymptomatic mutation carriers should allow early detection and timely therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  2. Manto M, Marien P. Schmahmann's syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(1):1–5.

    Article  Google Scholar 

  3. Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum. 2020;19(1):102–25.

  4. Klockgether T. Ataxias. Parkinsonism Relat Disord. 2007;13(Supplement 3):S391–4.

    Article  PubMed  Google Scholar 

  5. Klinke I, Minnerop M, Schmitz-Hubsch T, Hendriks M, Klockgether T, Wullner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9(3):433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choudhury S, Chatterjee S, Chatterjee K, Banerjee R, Humby J, Mondal B, et al. Clinical characterization of genetically diagnosed cases of Spinocerebellar Ataxia type 12 from India. Mov Disord Clin Pract. 2017;5(1):39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Delplanque J, Devos D, Huin V, Genet A, Sand O, Moreau C, et al. TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain. 2014;137(Pt 10):2657–63.

    Article  PubMed  Google Scholar 

  8. Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89(1):121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcia-Murias M, Quintans B, Arias M, Seixas AI, Cacheiro P, Tarrio R, et al. ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain. 2012;135(Pt 5):1423–35.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arias M, Quintans B, Garcia-Murias M, Sobrido MJ. Spinocerebellar Ataxia Type 36. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al. editors. GeneReviews(R) Seattle: University of Washington, Seattle; 2014.

  11. Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, et al. Clinical features of SCA36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology. 2012;79(4):333–41.

    Article  CAS  PubMed  Google Scholar 

  12. Aguiar P, Pardo J, Arias M, Quintans B, Fernandez-Prieto M, Martinez-Regueiro R, et al. PET and MRI detection of early and progressive neurodegeneration in spinocerebellar ataxia type 36. Mov Disord. 2017;32(2):264–73.

    Article  CAS  PubMed  Google Scholar 

  13. Abe K, Ikeda Y, Kurata T, Ohta Y, Manabe Y, Okamoto M, et al. Cognitive and affective impairments of a novel SCA/MND crossroad mutation Asidan. Eur J Neurol. 2012;19(8):1070–8.

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.

    Article  CAS  PubMed  Google Scholar 

  15. Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology. 2015;85(1):96–103.

    Article  PubMed  Google Scholar 

  16. Cárdenas, MR, Marrero V. Cuaderno de logoaudiometría. Madrid: Universidad Nacional de Educación a Distancia. 1994.

  17. Folstein MF, Folstein SE, McHugh PR, Fanjian G. MMSE: mini-mental state examination. Madrid: TEA Ediciones; 2002.

    Google Scholar 

  18. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a frontal assessment battery at bedside. Neurology. 2000;55(11):1621–6.

    Article  CAS  PubMed  Google Scholar 

  19. Pena-Casanova J, Quinones-Ubeda S, Quintana-Aparicio M, Aguilar M, Badenes D, Molinuevo JL, et al. Spanish multicenter normative studies (NEURONORMA project): norms for verbal span, visuospatial span, letter and number sequencing, trail making test, and symbol digit modalities test. Arch Clin Neuropsychol. 2009;24(4):321–41.

    Article  PubMed  Google Scholar 

  20. Golden CJ. STROOP. Test de Colores y Palabras. Madrid: TEA Ediciones; 1978.

    Google Scholar 

  21. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtis G. Wisconsin card sorting test manual: revised and expanded. Madrid: TEA Ediciones; 1993.

    Google Scholar 

  22. Wechsler D. WAIS-III, wechsler adult intelligence scale - Third Edition. Madrid: TEA Ediciones; 1997.

    Google Scholar 

  23. Benton AL, Varney NR, Hamsher KD. Visuospatial judgment. A clinical test. Arch Neurol. 1978;35(6):364–7.

    Article  CAS  PubMed  Google Scholar 

  24. Spreen O, Benton AL. Neurosensory center comprehensive examination for aphasia. Victoria: Neuropsychology Laboratory, University of Victoria; 1969.

    Google Scholar 

  25. Goodglass H, Kaplan E, Barresi B. Boston diagnostic aphasia examination-third edition (BDAE-3). Buenos Aires. Madrid: Médica Panamericana; 2005.

    Google Scholar 

  26. Pena-Casanova J, Quinones-Ubeda S, Gramunt-Fombuena N, Quintana-Aparicio M, Aguilar M, Badenes D, et al. Spanish multicenter normative studies (NEURONORMA project): norms for verbal fluency tests. Arch Clin Neuropsychol. 2009;24(4):395–411.

    Article  PubMed  Google Scholar 

  27. Beck A, Steer RA, Brown GK. Beck depression inventory - second edition: Pearson; 2011.

  28. Lobo A, Chamorro L, Luque A, Dal-Ré R, Badia X, Baró E, Grupo de Validación en Español de Escalas Psicométricas (GVEEP). Validación de las versiones en español de la Montgomery-Asberg Depression Rating Scale y la Hamilton Anxiety Rating Scale para la evaluación de la depresión y de la ansiedad. Med Clin. 2002;118(13):493–9.

  29. Strauss E, Sherman E, Spreen O. A compendium of neuropsychological tests. administration, norms, and commentary (Third Edition): Oxford University Press; 2006.

  30. Lilja A, Hamalainen P, Kaitaranta E, Rinne R. Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci. 2005;237(1–2):31–8.

    Article  PubMed  Google Scholar 

  31. Burk K. Cognition in hereditary ataxia. Cerebellum. 2007;6(3):280–6.

    Article  PubMed  Google Scholar 

  32. Wedding IM, Koht J, Dietrichs E, Landro NI, Tallaksen CM. Cognition is only minimally impaired in Spinocerebellar ataxia type 14 (SCA14): a neuropsychological study of ten Norwegian subjects compared to intrafamilial controls and population norm. BMC Neurol. 2013;13:186-2377-13-186.

    Article  Google Scholar 

  33. Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014;7(12):5765–71.

    PubMed  PubMed Central  Google Scholar 

  34. Scarpina F, Tagini S. The stroop color and word test. Front Psychol. 2017;8:557.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mak M, Tyburski E, Madany Å, Sokołowski A, Samochowiec A. Executive function deficits in patients after cerebellar neurosurgery. J Int Neuropsychol Soc. 2016;22(1):47–57.

    Article  PubMed  Google Scholar 

  36. Giocondo F, Curcio G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int J Neurosci. 2018;128(2):182–91.

    Article  PubMed  Google Scholar 

  37. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43.

    Article  PubMed  Google Scholar 

  38. Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatr. 2004;75(2):235.

    CAS  Google Scholar 

  39. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.

    Article  PubMed  Google Scholar 

  40. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606.

    Article  CAS  PubMed  Google Scholar 

  41. Chirino A, Hernandez-Castillo CR, Galvez V, Contreras A, Diaz R, Beltran-Parrazal L, et al. Motor and cognitive impairments in spinocerebellar ataxia type 7 and its correlations with cortical volumes. Eur J Neurosci. 2018;48(10):3199–211.

    Article  PubMed  Google Scholar 

  42. Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatr. 2008;79(5):496.

    Article  CAS  Google Scholar 

  43. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand. 2000;102(6):363–70.

    Article  CAS  PubMed  Google Scholar 

  45. Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex. 2012;48(6):718–24.

    Article  PubMed  Google Scholar 

  46. Martin A, Wiggs CL, Lalonde F, Mack C. Word retrieval to letter and semantic cues: a double dissociation in normal subjects using interference tasks. Neuropsychologia. 1994;32(12):1487–94.

    Article  CAS  PubMed  Google Scholar 

  47. Schweizer TA, Alexander MP, Susan Gillingham BA, Cusimano M, Stuss DT. Lateralized cerebellar contributions to word generation: a phonemic and semantic fluency study. Behav Neurol. 2010;23(1–2):31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mitrushina M, Boone K, Razani J, D’Elia L. Boston Naming Test. Handbook of normative data for neuropsychological assessment. 2nd ed. Oxford: Oxford University Press; 2005. p. 173–99.

    Google Scholar 

  49. Stoodley CJ, Schmahmann JD. Functional Topography of the Human Cerebellum. In: Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann JD, Shen Y, editors. Essentials of Cerebellum and Cerebellar Disorders. A Primer For Graduate Students. Switzerland: Springer; 2016. p. 373–81.

    Chapter  Google Scholar 

  50. Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.

    Article  CAS  PubMed  Google Scholar 

  51. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53.

    Article  PubMed  Google Scholar 

  52. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

    Article  CAS  PubMed  Google Scholar 

  53. Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin. 2016;12:765–75.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Almeida-Silva UC, Hallak JE, Junior WM, Osorio FL. Association between spinocerebellar ataxias caused by glutamine expansion and psychiatric and neuropsychological signals - a literature review. Am J Neurodegener Dis. 2013;2(2):57–69.

    PubMed  PubMed Central  Google Scholar 

  55. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  PubMed  Google Scholar 

  56. Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92.

    Article  PubMed  Google Scholar 

  57. Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum. 2016;15(6):732–43.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8.

    Article  PubMed  Google Scholar 

  59. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Schmahmann for his critical reading of this manuscript. We would also like to extend our sincerest gratitude to the patients for their participation, and AGA (Asociación Galega de Ataxias) for their continuing cooperation.

Funding

This study was funded by the grants ISCIII/ PI12/01013, PI12/00742, and FEDER. R. Martínez-Regueiro was supported by a public fellowship from ISCIII/ FI14-00510/ cofounded by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-J Sobrido.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Regueiro, R., Arias, M., Cruz, R. et al. Cerebellar Cognitive Affective Syndrome in Costa da Morte Ataxia (SCA36). Cerebellum 19, 501–509 (2020). https://doi.org/10.1007/s12311-020-01110-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01110-0

Keywords

Navigation