Skip to main content
Log in

Characteristics of Tremor Induced by Lesions of the Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

It is a clinical experience that acute lesions of the cerebellum induce pathological tremor, which tends to improve. However, quantitative characteristics, imaging correlates, and recovery of cerebellar tremor have not been systematically investigated. We studied the prevalence, quantitative parameters measured with biaxial accelerometry, and recovery of pathological tremor in 68 patients with lesions affecting the cerebellum. We also investigated the correlation between the occurrence and characteristics of tremor and lesion localization using 3D T1-weighted MRI images which were normalized and segmented according to a spatially unbiased atlas template for the cerebellum. Visual assessment detected pathological tremor in 19% while accelerometry in 47% of the patients. Tremor was present both in postural and intentional positions, but never at rest. Two types of pathological tremor were distinguished: (1) low-frequency tremor in 36.76% of patients (center frequency 2.66 ± 1.17 Hz) and (2) normal frequency–high-intensity tremor in 10.29% (center frequency 8.79 ± 1.43 Hz). The size of the lesion did not correlate with the presence or severity of tremor. Involvement of the anterior lobe and lobule VI was related to high tremor intensity. In all followed up patients with acute cerebellar ischemia, the tremor completely recovered within 8 weeks. Our results indicate that cerebellar lesions might induce pathological postural and intentional tremor of 2–3 Hz frequency. Due to its low frequency and low amplitude, quantitative tremorometry is neccessary to properly identify it. There is no tight correlation between lesion localization and quantitative characteristics of cerebellar tremor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord United States. 1998;13(Suppl 3):2–23.

    Google Scholar 

  2. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord United States. 2018;33:75–87.

    Article  Google Scholar 

  3. Ferrier DT. A Record of experiments illustrative of the symptomatology and degenerations following lesions of the cerebellum and its peduncles and related structures in monkeys. Philos Trans R Soc London [Internet]. 1894;185:719 LP–778.

  4. Atkin A, Kozlovskaya IB. Effects of cooling cerebellar nuclei on evoked forearm oscillations. Exp Neurol [Internet] Academic Press. 1976 [cited 2018 Apr 6];50:766–76.

    Article  CAS  Google Scholar 

  5. Flament D, Hore J. Comparison of cerebellar intention tremor under isotonic and isometric conditions. Brain Res Netherlands. 1988;439:179–86.

    Article  CAS  Google Scholar 

  6. Poirier LJ, Lafleur J, de Lean J, Guiot G, Larochelle L, Boucher R. Physiopathology of the cerebellum in the monkey. 2. Motor disturbances associated with partial and complete destruction of cerebellar structures. J Neurol Sci Netherlands. 1974;22:491–509.

    Article  CAS  Google Scholar 

  7. Larochelle L, Bedard P, Boucher R, Poirier LJ. The rubro-olivo-cerebello-rubral loop and postural tremor in the monkey. J Neurol Sci Netherlands. 1970;11:53–64.

    Article  CAS  Google Scholar 

  8. Park YG, Park HY, Lee CJ, Choi S, Jo S, Choi H, et al. Ca(V)3.1 is a tremor rhythm pacemaker in the inferior olive. Proc Natl Acad Sci U S A United States. 2010;107:10731–6.

    Article  Google Scholar 

  9. Holmes G. The Croonian Lectures. On the clinical symptoms of cerebellar disease and their interpretation. Lancet [Internet] Elsevier. 1922;199:1177–82.

    Google Scholar 

  10. Lawrenson C, Bares M, Kamondi A, Kovacs A, Lumb B, Apps R, et al. The mystery of the cerebellum: clues from experimental and clinical observations. Cerebellum & ataxias England. 2018;5:8.

    Article  Google Scholar 

  11. Cole JD, Philip HI, Sedgwick EM. Stability and tremor in the fingers associated with cerebellar hemisphere and cerebellar tract lesions in man. J Neurol Neurosurg Psychiatry England. 1988;51:1558–68.

    Article  CAS  Google Scholar 

  12. Milanov I. Electromyographic differentiation of tremors. Clin Neurophysiol Netherlands. 2001;112:1626–32.

    Article  CAS  Google Scholar 

  13. Louis ED, Lynch T, Ford B, Greene P, Bressman SB, Fahn S. Delayed-onset cerebellar syndrome. Arch Neurol United States. 1996;53:450–4.

    Article  CAS  Google Scholar 

  14. Elble RJ. Origins of tremor. Lancet (London, England). 2000;355:1113–4.

    Article  CAS  Google Scholar 

  15. Marek M, Paus S, Allert N, Madler B, Klockgether T, Urbach H, et al. Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol Germany. 2015;262:54–8.

    Article  CAS  Google Scholar 

  16. Coenen VA, Allert N, Paus S, Kronenburger M, Urbach H, Madler B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery United States. 2014;75:657–70.

    Article  Google Scholar 

  17. Timmann D, Konczak J, Ilg W, Donchin O, Hermsdorfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience United States. 2009;162:836–51.

    CAS  Google Scholar 

  18. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage United States. 1999;10:233–60.

  19. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage United States. 2009;46:39–46.

    Article  Google Scholar 

  20. Diedrichsen J, Maderwald S, Kuper M, Thurling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage United States. 2011;54:1786–94.

    Article  CAS  Google Scholar 

  21. van Baarsen KM, Kleinnijenhuis M, Jbabdi S, Sotiropoulos SN, Grotenhuis JA, van Cappellen van Walsum AM. A probabilistic atlas of the cerebellar white matter. Neuroimage United States. 2016;124:724–32.

    Article  Google Scholar 

  22. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp United States. 2001;13:55–73.

    Article  CAS  Google Scholar 

  23. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex Italy. 2010;46:831–44.

    Article  Google Scholar 

  24. Schlerf JE, Verstynen TD, Ivry RB, Spencer RMC. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol United States. 2010;103:3330–6.

    Article  CAS  Google Scholar 

  25. Konczak J, Pierscianek D, Hirsiger S, Bultmann U, Schoch B, Gizewski ER, et al. Recovery of upper limb function after cerebellar stroke: lesion symptom mapping and arm kinematics. Stroke United States. 2010;41:2191–200.

    Article  Google Scholar 

  26. Ashe J, Bushara K. The olivo-cerebellar system as a neural clock. Adv Exp Med Biol United States. 2014;829:155–65.

    Article  Google Scholar 

  27. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci Elsevier. 2013;17:241–54.

    Article  Google Scholar 

  28. Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol United States. 2011;69:269–81.

    Article  Google Scholar 

  29. Farkas Z, Szirmai I, Kamondi A. Impaired rhythm generation in essential tremor. Mov Disord United States. 2006;21:1196–9.

    Article  Google Scholar 

  30. Louis ED, Vonsattel JPG. The emerging neuropathology of essential tremor. Mov Disord United States. 2008;23:174–82.

    Article  Google Scholar 

  31. Shill HA, Adler CH, Sabbagh MN, Connor DJ, Caviness JN, Hentz JG, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology United States. 2008;70:1452–5.

  32. Nicoletti G, Manners D, Novellino F, Condino F, Malucelli E, Barbiroli B, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology United States. 2010;74:988–94.

  33. Broersma M, van der Stouwe AMM, Buijink AWG, de Jong BM, Groot PFC, Speelman JD, et al. Bilateral cerebellar activation in unilaterally challenged essential tremor. NeuroImage Clin Netherlands. 2016;11:1–9.

  34. Benito-Leon J, Labiano-Fontcuberta A. Linking essential tremor to the cerebellum: clinical evidence. Cerebellum United States. 2016;15:253–62.

    Article  Google Scholar 

  35. Filip P, Lungu OV, Manto MU, Bares M. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum United States. 2016;15:774–80.

    Article  Google Scholar 

  36. Dash SK, Stezin A, Takalkar T, George L, Kamble NL, Netravathi M, et al. Abnormalities of white and grey matter in early multiple system atrophy: comparison of parkinsonian and cerebellar variants. Eur Radiol Germany. 2019 Feb;29(2):716–724.

  37. Adanyeguh IM, Perlbarg V, Henry P-G, Rinaldi D, Petit E, Valabregue R, et al. Autosomal dominant cerebellar ataxias: imaging biomarkers with high effect sizes. NeuroImage Clin Netherlands. 2018;19:858–67.

  38. Wang JY, Hessl D, Hagerman RJ, Simon TJ, Tassone F, Ferrer E, et al. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging United States. 2017;55:11–9.

  39. Sasaki R, Maki F, Hara D, Tanaka S, Hasegawa Y. Stratification of disease progression in a broad spectrum of degenerative cerebellar ataxias with a clustering method using MRI-based atrophy rates of brain structures. Cerebellum & ataxias England. 2017;4:9.

    Article  Google Scholar 

  40. Gironell A, Kulisevsky J, Pascual-Sedano B, Barbanoj M. Routine neurophysiologic tremor analysis as a diagnostic tool for essential tremor: a prospective study. J Clin Neurophysiol United States. 2004;21:446–50.

    Article  Google Scholar 

  41. Elble R, Bain P, Forjaz MJ, Haubenberger D, Testa C, Goetz CG, et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Mov Disord United States. 2013;28:1793–800.

    Article  Google Scholar 

  42. Farkas Z, Gulyas S, Molnar R, Szirmai I, Kamondi A. Quantitative analysis of motor performance in epilepsy patients treated with valproate. Seizure England. 2010;19:173–7.

    Article  Google Scholar 

  43. Bast-Pettersen R, Ulvestad B, Faerden K, Clemm TAC, Olsen R, Ellingsen DG, et al. Tremor and hand-arm vibration syndrome (HAVS) in road maintenance workers. Int Arch Occup Environ Health Germany. 2017;90:93–106.

    Article  Google Scholar 

  44. Edwards R, Beuter A. Indexes for identification of abnormal tremor using computer tremor evaluation systems. IEEE Trans Biomed Eng United States. 1999;46:895–8.

    Article  CAS  Google Scholar 

  45. Farkas Z, Csillik A, Szirmai I, Kamondi A. Asymmetry of tremor intensity and frequency in Parkinson’s disease and essential tremor. Parkinsonism Relat Disord England. 2006;12:49–55.

    Article  Google Scholar 

  46. Elble RJ. Central mechanisms of tremor. J Clin Neurophysiol United States. 1996;13:133–44.

    Article  CAS  Google Scholar 

  47. Despres C, Richer F, Roberge M-C, Lamoureux D, Beuter A. Standardization of quantitative tests for preclinical detection of neuromotor dysfunctions in pediatric neurotoxicology. Neurotoxicology Netherlands. 2005;26:385–95.

    Article  CAS  Google Scholar 

  48. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage United States. 2006;33:127–38.

    Article  Google Scholar 

  49. Diedrichsen J, Zotow E. Surface-based display of volume-averaged cerebellar imaging data. PLoS One United States. 2015;10:e0133402.

    Article  CAS  Google Scholar 

  50. Meigal AY, Rissanen SM, Tarvainen MP, Georgiadis SD, Karjalainen PA, Airaksinen O, et al. Linear and nonlinear tremor acceleration characteristics in patients with Parkinson’s disease. Physiol Meas England. 2012;33:395–412.

  51. Kovacs N, Balas I, Illes Z, Kellenyi L, Doczi TP, Czopf J, et al. Uniform qualitative electrophysiological changes in postoperative rest tremor. Mov Disord United States. 2006;21:318–24.

  52. di Biase L, Brittain JS, Shah SA, Pedrosa DJ, Cagnan H, Mathy A, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain [Internet]. 2017;140:1977–86.

  53. Wastensson G, Holmberg B, Johnels B, Barregard L, et al. Tremor Other Hyperkinet Mov (N Y) [Internet] Columbia University Libraries/Information Services. 2013;3:tre-03-196-4279-2.

    Google Scholar 

  54. Papapetropoulos S, Katzen HL, Scanlon BK, Guevara A, Singer C, Levin BE. Objective quantification of neuromotor symptoms in Parkinson’s disease: implementation of a portable, computerized measurement tool. Park Dis Hindawi. 2010;760196

  55. Xu CY, Yin HM, Zhang BR. Evaluating the electrophysiological features of tremor in Parkinson’s disease and essential tremor using accelerometry. Zhonghua Yi Xue Za Zhi China. 2016;96:3289–93.

    CAS  Google Scholar 

  56. Beuter A, Edwards R. Using frequency domain characteristics to discriminate physiologic and parkinsonian tremors. J Clin Neurophysiol United States. 1999;16:484–94.

    Article  CAS  Google Scholar 

  57. Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience [Internet]. 2009;162:852–61.

    Article  CAS  Google Scholar 

  58. Wolfgang G, Ernst H, Martin L, Dirk W, Michael E. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp [Internet] Wiley-Blackwell. 2001;13:55–73.

    Article  Google Scholar 

  59. Louis ED, Lenka A. The olivary hypothesis of essential tremor: time to lay this model to rest? Tremor Other Hyperkinet Mov (NY) United States. 2017;7:473.

    Google Scholar 

  60. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci Nat Publ Group. 2005;8:1491.

    Article  CAS  Google Scholar 

  61. Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev United States. 2010;20:261–70.

    Article  Google Scholar 

  62. Timmermann L, Gross J, Dirks M, Volkmann J, Freund H, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain Oxford University Press. 2002;126:199–212.

    Google Scholar 

  63. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain England. 2013;136:696–709.

    Article  Google Scholar 

  64. Bares M, Lungu OV, Liu T, Waechter T, Gomez CM, Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum United States. 2011;10:233–44.

    Article  Google Scholar 

  65. Lungu OV, Bares M, Liu T, Gomez CM, Cechova I, Ashe J. Trial-to-trial adaptation: parsing out the roles of cerebellum and BG in predictive motor timing. J Cogn Neurosci United States. 2016;28:920–34.

    Article  Google Scholar 

  66. Kim M-S, Tak HJ, Son SM. Recovery of cerebellar peduncle injury in a patient with a cerebellar tumor: validation by diffusion tensor tractography. Neural Regen Res India. 2014;9:1929–32.

    Article  Google Scholar 

  67. Kakei S, Ishikawa T, Lee J, Honda T, Hoffman DS. Physiological and morphological principles underpinning recruitment of the cerebellar reserve. CNS Neurol Disord Drug Targets United Arab Emirates. 2018.17(3):184–192.

  68. Gironell A, Ribosa-Nogue R, Gich I, Marin-Lahoz J, Pascual-Sedano B. Severity stages in essential tremor: a long-term retrospective study using the glass scale. Tremor Other Hyperkinet Mov (NY) United States. 2015;5:299.

    Google Scholar 

  69. Kaindlstorfer C, Granata R, Wenning GK. Tremor in multiple system atrophy—a review. Tremor Other Hyperkinet Mov (NY) [Internet]. 2013;3:tre-03-165-4252-1.

    Google Scholar 

  70. Zhang J, Xing Y, Ma X, Feng L. Differential diagnosis of Parkinson disease, essential tremor, and enhanced physiological tremor with the tremor analysis of EMG. Parkinsons Dis [Internet] Hindawi. 2017;2017:1597907.

    Google Scholar 

  71. Louis ED, Pullman SL. Comparison of clinical vs. electrophysiological methods of diagnosing of essential tremor. Mov Disord [Internet] Wiley. 2001;16:668.

    Article  CAS  Google Scholar 

  72. Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med Mass Medical Soc. 2015;372:249–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our patients and to our colleagues of the National Institute of Clinical Neurosciences who were involved in patient management. We aknowledge the contribution of Gréta Zaja to data processing. We thank Dr. András Horváth for his valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Kamondi.

Ethics declarations

The study was approved by the local ethical committee of the Institute. Subjects’ informed consent was obtained according to the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1.

The relation of center and peak frequency in controls and in patients with physiologic and pathological tremor. a. Box-plot illustration of center frequency and peak frequency in the three groups in postural position. Data of 68 patients and 30 controls are summarized. Center frequency does not differ between controls and patients with physiologic tremor, however in patients with pathological tremor, it is decreased, and it is almost identical to the low peak frequency of this cohort. b. Bimodal power spectra of a control subject with physiologic tremor, showing center frequency (black) and peak frequency (red). Power spectra of patients with physiologic tremor showed the same pattern. c. Unimodal power spectra of patient 24MJ with pathological tremor, showing overlapping center frequency (black) and peak frequency (red). (PNG 446 kb)

High Resolution Image (TIF 302 kb)

Supplementary Figure 2.

Power spectra presenting gradual increase of center frequency and frequency dispersion of cerebellar tremor as sign of recovery after acute ischemic cerebellar lesion. a. Power spectrum of postural tremor in a patient 4 days after he suffered acute cerebellar stroke. Center frequency and peak frequency were almost the same (CF=2.6 Hz, PF=2.51 Hz), while frequency dispersion was remarkably low (FD=0.19 Hz); b. By day 10, center frequency became higher and it was clearly distinguishable from the peak frequency (CF=2.9 Hz, PF=2.19 Hz). The proportion of higher frequencies in the power spectrum increased which was demonstrated by the elevated frequency dispersion (FD=2.02 Hz); c. By day 21 both the center frequency (CF=5.7 Hz) and the frequency dispersion (FD=3.47 Hz) became normal. The peak frequency did not change (PF=2.19 Hz). Red line: peak frequency; Continuous black line: center frequency; Dashed line; lower and upper values of frequency dispersion. (PNG 548 kb)

High Resolution Image (TIF 294 kb)

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 19 kb)

ESM 3

(DOCX 54 kb)

ESM 4

(DOCX 21 kb)

ESM 5

(DOCX 20 kb)

ESM 6

(DOCX 15 kb)

ESM 7

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, A., Kiss, M., Pintér, N. et al. Characteristics of Tremor Induced by Lesions of the Cerebellum. Cerebellum 18, 705–720 (2019). https://doi.org/10.1007/s12311-019-01027-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01027-3

Keywords

Navigation