Skip to main content
Log in

The Cerebellar Thalamus

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The thalamus is a neural processor and integrator for the activities of the forebrain. Surprisingly, little is known about the roles of the “cerebellar” thalamus despite the anatomical observation that all the cortico-cerebello-cortical loops make relay in the main subnuclei of the thalamus. The thalamus displays a broad range of electrophysiological responses, such as neuronal spiking, bursting, or oscillatory rhythms, which contribute to precisely shape and to synchronize activities of cortical areas. We emphasize that the cerebellar thalamus deserves a renewal of interest to better understand its specific contributions to the cerebellar motor and associative functions, especially at a time where the anatomy between cerebellum and basal ganglia is being rewritten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon CF, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29-26:8586–94.

    Article  CAS  Google Scholar 

  2. Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61-4:1213–25.

    Article  Google Scholar 

  3. Sherman SM. Chapter 9: thalamic relays and cortical functioning. Progress Brain Sci. 2005;149:107–26.

    Article  Google Scholar 

  4. Sherman SM. Thalamus plays a central role in ongoing cortical activity functioning. Nat Neurosci. 2016;19-4:533–41.

    Article  CAS  Google Scholar 

  5. Sherman SM, Guillery RW. Functional connections of cortical areas. A new view from the cortical areas. Cambridge, London: The MIT Press; 2013.

    Book  Google Scholar 

  6. Shermann SM. Functioning of circuits connecting thalamus and cortex. Compr Physiol. 2017;7:713–39.

    Article  Google Scholar 

  7. Minchiacchi D, Molinari M, Macchi G, Jones EG (Edit). Thalamic networks for relay and modulation: Pergamon studies in neurosciences. Pergamon Press, 1st edition, 1993.

  8. Bickford ME. Thalamic circuit diversity: modulation of the driver/modulator framework. Front Neurosci. 2016;9:86.

    Google Scholar 

  9. Bartho P, Slézia A, Varga V, Bokor H, Pinault D, Buzsaki G, et al. Cortical control of zona incerta. J Neurosci. 2007;27-7:1670–81.

    Article  CAS  Google Scholar 

  10. Trageser JC, Keller A. Reducing the uncertainty: gating of peripheral inputs by zona incerta. J Neurosci. 2004;24-40:8911–5.

    Article  CAS  Google Scholar 

  11. Groh A, Bokor H, Mease RA, Plattner VM, Stroh A, Deschenes M, et al. Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex. 2013;24-12:3167–79.

    Google Scholar 

  12. Jones EG. Viewpoint: the core and matrix of thalamic organization. Neurosci. 1998;85-2:331–45.

    Article  Google Scholar 

  13. Cruickshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzales AN, Elmaleh M, et al. Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 2012;32-49:17813–23.

    Article  CAS  Google Scholar 

  14. Theyel BB, Lee CC, Shermann SM. Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. NeuroReport. 2010;21:861–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Münckle MC, Waldvogel HJ, Faull RLM. The distribution of calbindin, calretinin and paravalbumin immunoreactivity in the human thalamus. J Chem Neuroanat. 2000;19-3:155–73.

    Article  Google Scholar 

  16. Zeldenrust F, Wadman WJ, Englitz B. Neural coding with bursts-current state and future perspectives. Front Comput Neurosci. 2018;12. https://doi.org/10.3389/fncom.2018.00048.

  17. Zeldenrust F, Chameau PJP, Wadman WJ. Information coding by single spikes and bursts in thalamocortical relay neurons. Twentieth Annual Computational Neuroscience Meeting CNS*2011. BMC Neurosci. 2011;12(Suppl 1):P367.

    Article  PubMed Central  Google Scholar 

  18. Mease RA, Kuner T, Fairhall AL, Groh A. Multiplexed spike coding and adaptation in the thalamus. Cell Rep. 2017;19-6:1130–40.

    Article  CAS  Google Scholar 

  19. Hu H, Agmon A. Differential excitation of distally versus proximally targeting cortical interneurons by unitary thalamocortical bursts. J Neurosci. 2016;36-26:6906–16.

    Article  CAS  Google Scholar 

  20. Audette NJ, Urban-Ciecki J, Matsushita M, Barth AL. POm thalamocortical input drive layer-specific microcircuits in somatosensory cortex. Cereb Cortex. 2018;28-4:1312–28.

    Article  Google Scholar 

  21. Hay YA, Naudé J, Faure P. Lambolez B. Cereb Cortex: Target interneurons preferences in thalamocortical pathways determines the temporal structure of cortical responses; 2018.

    Google Scholar 

  22. Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B. 2002;357:1659–1673.22.

    Article  Google Scholar 

  23. Rockland KS. Corticothalamic axon morphologies and network architecture. Eur J Neurosci 2018

  24. Xiao D, Zikopoulos B, Barbas H. Laminar and modular organization of prefrontal projections to multiple thalamic nuclei. Neurosci. 2009;161-4:1067–81.

    Article  CAS  Google Scholar 

  25. Hoerder-Suabedissen A, Hayashi S, Nolan Z, Casas-Torremocha D, Grant E, Viswanathan S, et al. Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb Cortex. 2018;28–5:1882–97.

    Article  Google Scholar 

  26. Briggs F, Usrey WM. Emerging views of corticothalamic function. Curr Opin Neurobiol. 2008;18-4:403–7.

    Article  CAS  Google Scholar 

  27. Crandall SR, Cruikshank SJ, Connors BW. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron. 2015;86:768–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Connelly WM, Crunelli V, Errington AC. Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites. J Neurosci. 2016;36-13:3735–54.

    Article  Google Scholar 

  29. Nakajima M, Halassa MM. Thalamic control of functional connectivity. Curr Opin Neurobiol. 2017;44:127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahissar E, Oram T. Commentary. Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex. 2013;25:845–8.

    Article  PubMed  Google Scholar 

  31. MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48-5:811–23.

    Article  CAS  Google Scholar 

  32. Ketz NA, Jensen O, O’Reilly RC. Thalamic pathways underlying prefrontal-cortex-medial temporal lobe oscillatory interactions. TINS. 2014;38-1:1–12.

    Google Scholar 

  33. Llinas RR, Steriade M. Bursting of thalamic neurons and state of vigilance. J Neurophysiol. 2006;95:3297–308.

    Article  PubMed  Google Scholar 

  34. Buszaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.

    Article  CAS  Google Scholar 

  35. Steriade M. Grouping of brain rythms in corticothalamic systems. Neurosci. 2006;137–4:1087–106.

    Article  CAS  Google Scholar 

  36. Huguenard JR, McCormick DA. Thalamic synchrony and dysnamic regulation of the global forebrain oscillations. Trends Neurosci. 2007;30–7:350–6.

    Article  CAS  Google Scholar 

  37. Hoppensteadt FC, Izhikevitch EM. Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? BioSystems. 1998;48:85–94.

    Article  CAS  PubMed  Google Scholar 

  38. Rosjat N, Popovych S, Daun-Gruhn S. A mathematical model of dysfunction of the thalamo-cortical loop in schizophrenia. Theorit Biol Med Model. 2014;11:45.

    Article  Google Scholar 

  39. Kasevitch RS, LaBerge D. Theory of electric resonance in the neocortical apical dendrite. PLoS One. 2011;6(8):e23412.

    Article  CAS  Google Scholar 

  40. LaBerge D, Kasevich RS. Neuroelectric tuning of cortical oscillations by apical dendrites in loop circuits. Front Syst Neurosci. 2017;11:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spreafico R, Frassoni C, Recondi MC, Arcelli P, De Biasi S. Interneurons in the mammalian thalamus: a marker of species. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 17–28.

  42. Tracey DJ, Asanuma C, Jones EJ, Porter R. Thalamic relay to motor cortex: afferent pathways from brainstem, cerebellum, and spinal cord in monkeys. J Neurophysiol. 1980;44-3:532–54.

    Article  Google Scholar 

  43. Wiesendanger E, Wiesendanger M. Cerebello-cortical linkage in the monkey as revealed by transcellular labeling with lectin wheat germ agglutinin conjgated to the marker horseradishperoxydase. Exp Brain Res. 1985;59:105–17.

    CAS  PubMed  Google Scholar 

  44. Kalil K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J Comp Neurol. 1981;195-1:25–50.

    Article  Google Scholar 

  45. Sakai ST, Inase M, Tanji J. Pallidal and cerebellar inputs to thalamocortical neurons projecting to a supplementary motor area in Maccaca fuscata: a triple-labeling light microscopic study. Anat Embryol. 1999;199-1:9–19.

    Article  Google Scholar 

  46. Asanuma C, Thach WT, Jones EG. Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res Rev. 1983;5-3:219–35.

    Article  Google Scholar 

  47. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev. 1983;5-3:237–65.

    Article  Google Scholar 

  48. Asanuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286-3:267–97.

    Article  Google Scholar 

  49. Rodrigo ML, Reinoso-Suarez F. Cerebellar projection to the lateral posterior-pulvinar thalamic complex in cat. Brain Res. 1984;322-1:172–6.

    Article  Google Scholar 

  50. Schmahmann JD, Pandya DN. Projections to the basis ponti rom superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308-2:224–48.

    Article  Google Scholar 

  51. Yeterian EH, Pandya DN. Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol. 1989;282-1:80–97.

    Article  Google Scholar 

  52. Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex. 2014;24-3:626–32.

    Article  Google Scholar 

  53. Cavdar S, Onat F, Yananli HR, Sehirli US, Tulay C, Saka E, et al. Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat. 2002;201-6:485–91.

    Article  Google Scholar 

  54. Chan-Palay V. Cerebellar dentate nucleus. Organization, cytology and transmitters. Springer-Verlag. Berlin Heidelberg GmBH 1977. pp: 339–341.

  55. Batton RR III, Jayaram A, Ruggiero A, Carpenter MB. Fastigial efferent projection in the monkey: an autoradiographic study. J Comp Neurol. 1977;174-2:281–305.

    Article  Google Scholar 

  56. Sakai ST, Inase M, Tanji J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol. 1996;368(2):215–28.

    Article  CAS  PubMed  Google Scholar 

  57. Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxydase and fluorescent dye double staining study. Brain Res. 1992;579-2:315–20.

    Article  Google Scholar 

  58. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev. 2000;31:236–50.

    Article  CAS  PubMed  Google Scholar 

  59. Dum RP, Strick PL. An unfolded map of the cerbellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  60. Middleton FA, Strick PL. Cerebellar projections to the prefontal cortex of the primate. J Neurosci. 2001;21-2:700–12.

    Article  Google Scholar 

  61. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8-11:1491–3.

    Article  CAS  Google Scholar 

  62. Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci. 2013;7-163:1–21.

    Google Scholar 

  63. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. PNAS. 2010;107-18:8452–6.

    Article  Google Scholar 

  64. Jakab A, Werner B, Piccirelli M, Kovacs K, Martin E, et al. Feasibility of diffusion tractography for the reconstruction of intra-thalamic targets for functional neurosurgery: a muli-vendor pilot study. Front Neuroanat. 2016;10:1–15.

    Article  Google Scholar 

  65. Hyam JA, Owen SL, Kringelbach M, et al. Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery. 2012;70:162–9.

    Article  PubMed  Google Scholar 

  66. Jissendi P, Baudry S, Balériaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol (Paris). 2008;35-1:45–50.

    Google Scholar 

  67. Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with 1.5 T MRI. Neuroradiol. 2006;48:755–62.

    Article  Google Scholar 

  68. Pelzer EA, Melzer C, Timmermann L, von Cramon DY, Tittgemeyer M. Basal ganglia and cerebellar interconnectivity witin the human thalamus. Brain Struct Funct. 2017;222:381–92.

    Article  PubMed  Google Scholar 

  69. Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg. 2016;124:1406–12.

    Article  PubMed  Google Scholar 

  70. Hintzen A, Pelzer EA, Tittgemeyer M. Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct. 2018;223:569–87.

    Article  PubMed  Google Scholar 

  71. Harding BN. An ultrastructural study of the centre median and ventrolateral thalamic nuclei of the monkey. Brain Res. 1973;54:335–40.

    Article  CAS  PubMed  Google Scholar 

  72. Shinoda Y, Futami T, Kano M. Synaptic organization of the cerebello-thalamo-cerebral pathway in cat. II. Input-output organization of single thalamocortical neurons in the ventrolateral thalamus. Neurosci Res. 1985;2-3:157–80.

    Article  Google Scholar 

  73. Ando N, Izawa Y, Shinoda Y. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Physiol. 1995;73:2470–85.

    CAS  Google Scholar 

  74. Ilinsky IA, Toga AW, Kultas-Ilinsky K. Anatomical organisation of internal neuronal circuits in the motor thalamus. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 155–174.

  75. Shinoda Y, Kakai S, Wannier T, Futami T, Sugiuchi Y. Input-ouput organisation of the ventrolateral nucleus of the thalamus in the cerebello-thalamo-cortical system. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 135–144.

  76. Gomati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating cerebellar impact on thalamic nuclei. Cell Rep. 2018;23-9:2690–704.

    Google Scholar 

  77. Xiao L, Bornmann C, Hatstaat-Burklé L, Scheiffele P. Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nat Commun. 2018;9:3133. https://doi.org/10.1038/s41467-018-05565-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bortone DS, Olsen SR, Scanziani M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron. 2014;82–2:474–85.

    Article  CAS  Google Scholar 

  79. Roger M, Cadusseau J. Afferents to the zona incerta in the rat: a combined retrograde and anterograde study. J Comp Neurol. 1985;241-4:480–92.

    Article  Google Scholar 

  80. Power BD, Kolmac CI, Mitrofanis J. Evidence for a large projection from the zona incerta to the dorsal thalamus. J Comp Neurol. 1999;404-4:554–65.

    Article  Google Scholar 

  81. Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res. 2018;104:72–9.

    Article  Google Scholar 

  82. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19-6:338–50.

    Article  CAS  Google Scholar 

  83. Sommer MA. The motor thalamus. Curr Opin Neurobiol. 2003;13:663–70.

    Article  CAS  PubMed  Google Scholar 

  84. Butler EG, Horna MK, Rawson JA. Sensory characteristics of monkey thalamic and motor cortex neurones. J Physiol. 1992;445:1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Butler EG, Horne MK, Hawkins NJ. The activity of monkey thalamic and motor cortical neurones in a skilled, ballistic movement. J Physiol. 1992;445:25–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ivanusic JJ, Bourke DW, Xu ZM, Butler EG, Horne MK. Cerebellar activity in the macaque monkey encodes the duration but not force or velocity of wrist movement. Brain Res. 2005;1041-2:181–97.

    Article  CAS  Google Scholar 

  87. van Donkalaar P, Stein SF, Passingham RE, Miall RC. Neuronal activity in the primate motor thalamus during visually trigerred and internally generated limb movements. J Neurophysiol. 1999;82-2:934–45.

    Article  Google Scholar 

  88. van Donkalaar P, Stein SF, Passingham RE, Miall RC. Temporary inactivation in the primate motor thalamus during visually trigerred and internally generated limb movements. J Neurophysiol. 2000;83-5:2780–90.

    Article  Google Scholar 

  89. Proville RD, Spolidoro M, Guyon N, Dugué GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17-9:1233–9.

    Article  CAS  Google Scholar 

  90. Reato D, Tara E, Khodakhah K. Deep cerebellar nuclei rebound firing in vivo: much ado about almost nothing. In: The neural code of the cerebellum. Heck DH (Ed.). Academic Press. Elsevier. 2016. pp: 27–51.

  91. Holschneider DP, Yang J, Guo Y, Maarek J-MI. Reorganization of functional brain maps after exercise training: importance of cerebellar-thalamic-cortical pathway. Brain Res. 2007;1184:96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamamoto T, Kawaguchi S, Samejima A. Electrophysiological studies on the cerebellocerebral projection in the rat. Exp Neurol. 1979;63:545–58.

    Article  CAS  PubMed  Google Scholar 

  93. Sasaki S. Electrophysiological studies of the cerebellothalamocortical projections. Appl Neurophysiol. 1976/77;39:239–50.

    Article  PubMed  Google Scholar 

  94. Tanaka YH, Tanaka YR, Kondo M, Terada S-I, Kawaguchi Y, Matsuzaki M. Thalamocortical axonal activity in motor cortex exhibits layer-specific dynamics during motor learning. Neuron. 2018;100(1):P244–58.

    Article  CAS  Google Scholar 

  95. Gaidica M, Hurst A, Cyr C, Leventhal DK. Distinct populations of motor thalamic neurons encode action initiation, action selection, and movement vigor. J Neurosci. 2018;38(29):6563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Timofeev I, Steriade M. Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol. 1997;504-1:153–68.

    Article  Google Scholar 

  97. Mardsen JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain. 2000;123-7:1459–70.

    Google Scholar 

  98. Paradiso G, Cunic D, Saint-Cyr JA, Hoque T, Lozano AM, Lang AE, et al. Involvement of human thalamus in the preparartion of self-paced movements. Brain. 2004;127-12:2717–31.

    Article  Google Scholar 

  99. Edagawa K, Kawasaki M. Beta phase synchronization in the frontal-temporalcerebellar network during auditory-to-motor rhythm learning. Sci Report. 2017;7:42721.

    Article  CAS  Google Scholar 

  100. Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebero-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17-6:1476–85.

    Article  Google Scholar 

  101. Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns G. Neural correlates of the complexity of rhythmic finger tapping. NeuroImage. 2001;20:918–26.

    Article  Google Scholar 

  102. Gross J, Timmermann L, Kujala J, Dirks M, Schmidz F, Salmelin R, et al. The neural basis of intermittent motor control in humans. PNAS. 2002;99-4:2299–302.

    Article  CAS  Google Scholar 

  103. Kros L, Elkman OHJ, Spanke JK, Alva P, van Dongen MN, Karapatis A, et al. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol. 2015;77:1027–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sakai K, Hokosaka O, Nakamura K. Emergence of rhythm during motor learning. TICS. 2004;8-12:547–53.

    Google Scholar 

  105. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  106. Ide JS, Li C-SR. A cerebellar thalamic cortical circuit for error-related cognitive control. NeuroImage. 2011;54-1:455–64.

    Article  Google Scholar 

  107. McKenna TM, McMullen TA, Shlesinger MF. The brain as adynamic phisical system. Neurosci. 1994;60–3:587–605.

    Article  Google Scholar 

  108. Tognoli E, Kelso JAS. The metastable brain. Neuron. 2014;81-1:35–48.

    Article  CAS  Google Scholar 

  109. Senden M, Reuter N, van den Heuvel MP, Goebel R, Deco G. Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. NeuroImage. 2017;146:561–74.

    Article  PubMed  Google Scholar 

  110. Jantzen KJ, Kelso JAS. Neural coordination dynamics of human sensorimotor behavior: a review. In: Jirsa VK, McIntoch A, editors. Handbook of brain connectivity. Heidelberg: Springer Berlin; 2007. p. 421–61.

    Chapter  Google Scholar 

  111. Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circ. 2013;7-125:1–15.

    Google Scholar 

  112. De Luca C, Jantzen KJ, Comani S, Bertollo M, Kelso JAS. Striatal activity during intentional switching depends on pattern stability. J Neurosci. 2010;30-9:3167–74.

    Article  CAS  Google Scholar 

  113. Boonstra F, Florescu G, Evans A, Steward C, Mitchell P, Desmond P, et al. Tremor in multiple sclerosis is associated with cerebello-thalamic pathology. J Neural Transm. 2017;124-12:1509–14.

    Article  Google Scholar 

  114. Nagaseki Y, Shibazaki T, Hirai T, et al. Long-term follow-up results of selective VIM-thalamotomy. J Neurosurg. 1986;65:296–302.

    Article  CAS  PubMed  Google Scholar 

  115. Hashimoto T, Murualidharan A, Yoshida K, Goto T, Yako T, Baker KB, et al. Neuronal activity and outcomes from thalamic surgery for spinocerebellar ataxia. Ann Clin Transl Neurol. 2017;5-1:52–63.

    Google Scholar 

  116. Anasuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev. 1983;5:267–97.

    Article  Google Scholar 

  117. Solomon DH, Barohn RJ, Bazan C, Grissom J. The thalamic ataxia syndrome. Neurology. 1994;44(5):810–4.

    Article  CAS  PubMed  Google Scholar 

  118. Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16(2):283–92.

    Article  PubMed  Google Scholar 

  119. Bernard JA, Orr JM, Mittal VA. Cerebello-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin. 2017;14:622–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dirkx MF, den Ouden HE, Aarts E, Timmer MH, Bloem BR, Toni I, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain. 2017;140(3):721–34.

    PubMed  Google Scholar 

  121. Hou Y, Ou R, Yang J, Song W, Gong Q, Shang H. Patterns of stiatal and cerebellar functional connectivity in early-stage drug-naïve patients with Parkinson’s disease subtypes. Neuroradiology. 2018;60(12):1323–33.

    Article  PubMed  Google Scholar 

  122. Schirinzi T, Di Lorenzo F, Ponzo V, Palmieri MG, Bentivoglio AR, Schillaci O, et al. Mild cerebello-thalamo-cortical impairment in patients with normal dopaminergic scans (SWEDD). Parkinsonism Relat Disord. 2016;28:23–8.

    Article  PubMed  Google Scholar 

  123. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage. 2004;21:1416–27.

    Article  CAS  PubMed  Google Scholar 

  124. Sakai K, Hikosaka O, Nakamura K. Emergence of rhythm during motor learning. TICS. 2014;8-12:547–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Habas.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habas, C., Manto, M. & Cabaraux, P. The Cerebellar Thalamus. Cerebellum 18, 635–648 (2019). https://doi.org/10.1007/s12311-019-01019-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01019-3

Keywords

Navigation