Advertisement

The Cerebellum

, Volume 17, Issue 5, pp 692–697 | Cite as

C-terminal proline deletions in KCNC3 cause delayed channel inactivation and an adult-onset progressive SCA13 with spasticity

  • Swati Khare
  • Kira Galeano
  • Yalan Zhang
  • Jerelyn A. Nick
  • Harry S. Nick
  • S. H. Subramony
  • Jacinda Sampson
  • Leonard K. Kaczmarek
  • Michael F. Waters
Short Report

Abstract

Mutations in the potassium channel gene KCNC3 (Kv3.3) cause the autosomal dominant neurological disease, spinocerebellar ataxia 13 (SCA13). In this study, we expand the genotype-phenotype repertoire of SCA13 by describing the novel KCNC3 deletion p.Pro583_Pro585del highlighting the allelic heterogeneity observed in SCA13 patients. We characterize adult-onset, progressive clinical symptoms of two afflicted kindred and introduce the symptom of profound spasticity not previously associated with the SCA13 phenotype. We also present molecular and electrophysiological characterizations of the mutant protein in mammalian cell culture. Mechanistically, the p.Pro583_Pro585del protein showed normal membrane trafficking with an altered electrophysiological profile, including slower inactivation and decreased sensitivity to the inactivation-accelerating effects of the actin depolymerizer latrunculin B. Taken together, our results highlight the clinical importance of the intracellular C-terminal portion of Kv3.3 and its association with ion channel function.

Keywords

Spinocerebellar ataxia 13 KCNC3 Spasticity C-terminal deletion Allelic heterogeneity 

Notes

Acknowledgments

We thank the staff of Neuroscience Publications at Barrow Neurological Institute for assistance with manuscript preparation.

Funding Information

Financial support was provided by NIH grants NINDS K23 NS054715 (M.F.W.), NIDCD01919 (L.K.K.), and the McKnight Brain Institute at the University of Florida.

Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Written informed consent was obtained from the patients for the publication of this study with approval from the Institutional Review Board (University of Florida and Columbia University). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

12311_2018_950_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. 1.
    Zhang Y, Kaczmarek LK. Kv3.3 potassium channels and spinocerebellar ataxia. J Physiol. 2015;00:1–8.Google Scholar
  2. 2.
    Waters MF, Pulst SM. SCA13. Cerebellum. 2008;7:165–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Montaut S, Apartis E, Chanson JB, Ewenczyk C, Renaud M, Guissart C, et al. SCA13 causes dominantly inherited non-progressive myoclonus ataxia. Parkinsonism Relat Disord. 2017;38:80–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Waters MF, Minassian N, Stevanin G, Figueroa KP, Bannister JP, Nolte D, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet. 2006;38:447–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Khare S, Nick JA, Zhang Y, Galeano K, Butler B, Khoshbouei H, et al. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS One. 2017;12(5):e0173565.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gallego-Iradi C, Bickford JS, Khare S, Hall A, Nick JA, Salmasinia D, et al. KCNC3R420H, a K+ channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking. Neurobiol Dis. 2014;71:270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Duarri A, Nibbeling EA, Fokkens MR, Meijer M, Boerrigter M, Verschuuren-Bemelmans CC, et al. Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases. PLoS One. 2015;10(3):e0116599.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang Y, Zhang XF, Fleming MR, Amiri A, El-Hassar L, Surguchev AA, et al. Kv3.3 channels bind Hax-1 and Arp2/3 to assemble a stable local actin network that regulates channel gating. Cell. 2016;165(2):434–48.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim BR, Lim JH, Lee SA, Park S, Koh SE, Lee IS, et al. Usefulness of the scale for the assessment and rating of ataxia (SARA) in ataxic stroke patients. Ann Rehabil Med. 2011;35(6):772–80.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Pedroso JL, de Souza PV, Pinto WB, Braga-Neto P, Albuquerque MV, Saraiva-Pereira ML, et al. SCA1 patients may present as hereditary spastic paraplegia and must be included in spastic-ataxias group. Parkinsonism Relat Disord. 2015;21(10):1243–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang YG, Du J, Wang JL, Chen J, Chen C, Luo YY, et al. Six cases of SCA3/MJD patients that mimic hereditary spastic paraplegia in clinic. J Neurol Sci. 2009;285(1–2):121–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21(4):379–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Tsoi H, Yu AC, Chen ZS, Ng NK, Chan AY, Yuen LY, et al. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51(9):590–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Irie T, Matsuzaki Y, Sekino Y, Hirai H. Kv3.3 channels harbouring a mutation of spinocerebellar ataxia type 13 alter excitability and induce cell death in cultured cerebellar Purkinje cells. J Physiol. 2014;592(1):229–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Shakkottai VG, do Carmo Costa M, Dell'Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci. 2011;31(36):13002–14.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chao JR, Parganas E, Boyd K, Hong CY, Opferman JT, Ihle JN. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature. 2008;452(7183):98–102.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Swati Khare
    • 1
    • 2
  • Kira Galeano
    • 3
  • Yalan Zhang
    • 4
  • Jerelyn A. Nick
    • 5
  • Harry S. Nick
    • 5
  • S. H. Subramony
    • 3
  • Jacinda Sampson
    • 6
  • Leonard K. Kaczmarek
    • 4
  • Michael F. Waters
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Neurology, Barrow Neurological InstituteSt. Joseph’s Hospital and Medical CenterPhoenixUSA
  3. 3.Department of NeurologyUniversity of FloridaGainesvilleUSA
  4. 4.Department of PharmacologyYale UniversityNew HavenUSA
  5. 5.Department of NeuroscienceUniversity of FloridaGainesvilleUSA
  6. 6.Department of NeurologyStanford UniversityStanfordUSA

Personalised recommendations