Advertisement

The Cerebellum

, Volume 17, Issue 3, pp 372–379 | Cite as

Cerebellar Abiotrophy Across Domestic Species

  • Erica Yuki Scott
  • Kevin Douglas Woolard
  • Carrie J. Finno
  • James D. MurrayEmail author
Review

Abstract

Cerebellar abiotrophy (CA) is a neurodegenerative disorder affecting the cerebellum and occurs in multiple species. Although CA is well researched in humans and mice, domestic species such as the dog, cat, sheep, cow, and horse receive little recognition. This may be due to few studies addressing the mechanism of CA in these species. However, valuable information can still be extracted from these cases. A review of the clinicohistologic phenotype of CA in these species and determining the various etiologies of CA may aid in determining conserved and required pathways necessary for proper cerebellar development and function. This review outlines research approaches of studies of CA in domestic species, compared to the approaches used in mice, with the objective of comparing CA in domestic species while identifying areas for further research efforts.

Keywords

Cerebellar abiotrophy Domestic species Histology 

References

  1. 1.
    Sultan F, Glickstein M. The cerebellum: comparative and animal studies. Cerebellum. 2007;6(3):168–76.  https://doi.org/10.1080/14734220701332486.CrossRefPubMedGoogle Scholar
  2. 2.
    Clark DA, Mitra PP, Wang SS. Scalable architecture in mammalian brains. Nature. 2001;411(6834):189–93.  https://doi.org/10.1038/35075564.CrossRefPubMedGoogle Scholar
  3. 3.
    Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sarko DK, Catania KC, Leitch DB, Kaas JH, Herculano-Houzel S. Cellular scaling rules of insectivore brains. Front Neuroanat. 2009;3:8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huang C, Gammon SJ, Dieterle M, Huang RH, Likins L, Ricklefs RE. Dramatic increases in number of cerebellar granule-cell-Purkinje-cell synapses across several mammals. Mamm Biol—Z Säugetierkd. 2014;79(3):163–9.  https://doi.org/10.1016/j.mambio.2013.12.003.CrossRefGoogle Scholar
  6. 6.
    Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(Pt 3):696–709.  https://doi.org/10.1093/brain/aws360.CrossRefPubMedGoogle Scholar
  7. 7.
    Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. NeuroImage. 2010;53(3):1023–9.  https://doi.org/10.1016/j.neuroimage.2010.03.038.CrossRefPubMedGoogle Scholar
  8. 8.
    Roy S, Zhao Y, Allensworth M, Farook MF, LeDoux MS, Reiter LT, et al. Comprehensive motor testing in Fmr1-KO mice exposes temporal defects in oromotor coordination. Behav Neurosci. 2011;125(6):962–9.  https://doi.org/10.1037/a0025920.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    de Lahunta A. Abiotrophy in domestic animals: a review. Can J Vet Res. 1990;54(1):65–76.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Siso S, Hanzlicek D, Fluehmann G, Kathmann I, Tomek A, Papa V, et al. Neurodegenerative diseases in domestic animals: a comparative review. Vet J. 2006;171(1):20–38.  https://doi.org/10.1016/j.tvjl.2004.08.015.CrossRefPubMedGoogle Scholar
  11. 11.
    Vermeer S, Meijer RP, Pijl BJ, Timmermans J, Cruysberg JR, Bos MM, et al. ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics. 2008;9(3):207–14.  https://doi.org/10.1007/s10048-008-0131-7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jennings AR, Sumner GR. Cortical cerebellar disease in an Ayrshire calf. Vet Rec. 1951;63(4):60–1.CrossRefPubMedGoogle Scholar
  13. 13.
    Lalonde R, Strazielle C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 2007;1140:51–74.  https://doi.org/10.1016/j.brainres.2006.01.031.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldowitz D. The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: evidence from homozygous weaver chimeras. Neuron. 1989;2(6):1565–75.  https://doi.org/10.1016/0896-6273(89)90045-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388(6644):769–73.  https://doi.org/10.1038/42009.CrossRefPubMedGoogle Scholar
  16. 16.
    Herrup K, Thoenen H. Properties of the nerve growth factor receptor of a clonal line of rat pheochromocytoma (PC12) cells. Exp Cell Res. 1979;121(1):71–8.  https://doi.org/10.1016/0014-4827(79)90445-2.CrossRefPubMedGoogle Scholar
  17. 17.
    Smeyne RJ, Goldowitz D. Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci. 1989;9(5):1608–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirano A, Dembitzer HM. Cerebellar alterations in the weaver mouse. J Cell Biol. 1973;56(2):478–86.  https://doi.org/10.1083/jcb.56.2.478.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schiffmann SN, Bernier B, Goffinet AM. Reelin mRNA expression during mouse brain development. Eur J Neurosci. 1997;9(5):1055–71.  https://doi.org/10.1111/j.1460-9568.1997.tb01456.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Herrup K, Trenkner E. Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience. 1987;23(3):871–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Wassef M, Sotelo C, Cholley B, Brehier A, Thomasset M. Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol. 1987;124(2):379–89.  https://doi.org/10.1016/0012-1606(87)90490-8.CrossRefPubMedGoogle Scholar
  22. 22.
    Herrup K, Wilczynski SL. Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience. 1982;7(9):2185–96.  https://doi.org/10.1016/0306-4522(82)90129-4.CrossRefPubMedGoogle Scholar
  23. 23.
    Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, et al. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science. 2002;295(5561):1904–6.  https://doi.org/10.1126/science.1068912.CrossRefPubMedGoogle Scholar
  24. 24.
    LaVail MM, White MP, Gorrin GM, Yasumura D, Porrello KV, Mullen RJ. Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix. J Comp Neurol. 1993;333(2):168–81.  https://doi.org/10.1002/cne.903330204.CrossRefPubMedGoogle Scholar
  25. 25.
    Vogel MW, Fan H, Sydnor J, Guidetti P. Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die. Neuroreport. 2001;12(14):3039–43.  https://doi.org/10.1097/00001756-200110080-00012.CrossRefPubMedGoogle Scholar
  26. 26.
    Oostland M, Buijink MR, Teunisse GM, von Oerthel L, Smidt MP, van Hooft JA. Distinct temporal expression of 5-HT(1A) and 5-HT(2A) receptors on cerebellar granule cells in mice. Cerebellum. 2014;13(4):491–500.  https://doi.org/10.1007/s12311-014-0565-4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bertalan A, Glass EN, Kent M, De LaHunta A, Bradley C. Late-onset cerebellar abiotrophy in a Labrador retriever. Aust Vet J. 2014;92(9):339–42.  https://doi.org/10.1111/avj.12211.CrossRefPubMedGoogle Scholar
  28. 28.
    Cavalleri JM, Metzger J, Hellige M, Lampe V, Stuckenschneider K, Tipold A, et al. Morphometric magnetic resonance imaging and genetic testing in cerebellar abiotrophy in Arabian horses. BMC Vet Res. 2013;9(1):105.  https://doi.org/10.1186/1746-6148-9-105.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Urkasemsin G, Linder KE, Bell JS, de Lahunta A, Olby NJ. Hereditary cerebellar degeneration in Scottish terriers. J Vet Intern Med. 2010;24(3):565–70.  https://doi.org/10.1111/j.1939-1676.2010.0499.x.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnstone AC, Johnson CB, Malcolm KE, Jolly RD. Cerebellar cortical abiotrophy in Wiltshire sheep. N Z Vet J. 2005;53(4):242–5.  https://doi.org/10.1080/00480169.2005.36552.CrossRefPubMedGoogle Scholar
  31. 31.
    Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70(6):473–507.  https://doi.org/10.1016/S0301-0082(03)00114-X.CrossRefPubMedGoogle Scholar
  32. 32.
    Blanco A, Moyano R, Vivo J, Flores-Acuna R, Molina A, Blanco C, et al. Purkinje cell apoptosis in Arabian horses with cerebellar abiotrophy. J Vet Med A Physiol Pathol Clin Med. 2006;53(6):286–7.  https://doi.org/10.1111/j.1439-0442.2006.00836.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Hartley WJ, Barker JSF, Wanner RA, Farrow BRH. Inherited cerebellar degeneration in rough coated collie. Aust Vet Pract. 1978;8(2):79–85.Google Scholar
  34. 34.
    Tatalick LM, Marks SL, Baszler TV. Cerebellar abiotrophy characterized by granular cell loss in a Brittany. Vet Pathol. 1993;30(4):385–8.  https://doi.org/10.1177/030098589303000411.CrossRefPubMedGoogle Scholar
  35. 35.
    DeBowes RM, Leipold HW, Turner-Beatty M. Cerebellar abiotrophy. Vet Clin North Am Equine Pract. 1987;3(2):345–52.  https://doi.org/10.1016/S0749-0739(17)30677-6.CrossRefPubMedGoogle Scholar
  36. 36.
    Nguyen F, George C, Douart A, Cherel Y, Lars F, Wyers M. Late onset of cerebellar abiotrophy in a Holstein heifer. Eur J Vet Pathol. 2001;7(1):27–9.Google Scholar
  37. 37.
    Sandy JR, Slocombe RE, Mitten RW, Jedwab D. Cerebellar abiotrophy in a family of border collie dogs. Vet Pathol. 2002;39(6):736–8.  https://doi.org/10.1354/vp.39-6-736.CrossRefPubMedGoogle Scholar
  38. 38.
    Barone G, Foureman P, deLahunta A. Adult-onset cerebellar cortical abiotrophy and retinal degeneration in a domestic shorthair cat. J Am Anim Hosp Assoc. 2002;38(1):51–4.  https://doi.org/10.5326/0380051.CrossRefPubMedGoogle Scholar
  39. 39.
    Speciale J, de Lahunta A. Cerebellar degeneration in a mature Staffordshire terrier. J Am Anim Hosp Assoc. 2003;39(5):459–62.  https://doi.org/10.5326/0390459.CrossRefPubMedGoogle Scholar
  40. 40.
    Milne EM, Schock A. Cerebellar abiotrophy in a pedigree Charollais sheep flock. Vet Rec. 1998;143(8):224–5.  https://doi.org/10.1136/vr.143.8.224.CrossRefPubMedGoogle Scholar
  41. 41.
    Whittington RJ, Morton AG, Kennedy DJ. Cerebellar abiotrophy in crossbred cattle. Aust Vet J. 1989;66(1):12–5.  https://doi.org/10.1111/j.1751-0813.1989.tb09705.x.CrossRefPubMedGoogle Scholar
  42. 42.
    Biolatti C, Gianella P, Capucchio MT, Borrelli A, D’Angelo A. Late onset and rapid progression of cerebellar abiotrophy in a domestic shorthair cat. J Small Anim Pract. 2010;51(2):123–6.  https://doi.org/10.1111/j.1748-5827.2009.00852.x.CrossRefPubMedGoogle Scholar
  43. 43.
    de Lahunta A, Fenner WR, Indrieri RJ, Mellick PW, Gardner S, Bell JS. Hereditary cerebellar cortical abiotrophy in the Gordon setter. J Am Vet Med Assoc. 1980;177(6):538–41.PubMedGoogle Scholar
  44. 44.
    Negrin A, Bernardini M, Baumgartner W, Castagnaro M. Late onset cerebellar degeneration in a middle-aged cat. J Feline Med Surg. 2006;8(6):424–9.  https://doi.org/10.1016/j.jfms.2006.04.007.CrossRefPubMedGoogle Scholar
  45. 45.
    Shamir M, Perl S, Sharon L. Late onset of cerebellar abiotrophy in a Siamese cat. J Small Anim Pract. 1999;40(7):343–5.  https://doi.org/10.1111/j.1748-5827.1999.tb03095.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Taniyama H, Takayanagi S, Izumisawa Y, Kotani T, Kaji Y, Okada H, et al. Cerebellar cortical atrophy in a kitten. Vet Pathol. 1994;31(6):710–3.  https://doi.org/10.1177/030098589403100614.CrossRefPubMedGoogle Scholar
  47. 47.
    Bildfell RJ, Mitchell SK, de Lahunta A. Cerebellar cortical degeneration in a Labrador retriever. Can Vet J. 1995;36(9):570–2.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schild AL, Riet-Correa F, Portiansky EL, Mendez MC, Graca DL. Congenital cerebellar cortical degeneration in Holstein cattle in Southern Brazil. Vet Res Commun. 2001;25(3):189–95.  https://doi.org/10.1023/A:1006477508776.CrossRefPubMedGoogle Scholar
  49. 49.
    Koehler JW, Newcomer BW, Holland M, Caldwell JMA. Novel inherited cerebellar abiotrophy in a cohort of related goats. J Comp Pathol. 2015;153(2–3):135–9.  https://doi.org/10.1016/j.jcpa.2015.06.001.CrossRefPubMedGoogle Scholar
  50. 50.
    Harper PA, Plant JW, Walker KH, Timmins KG. Progressive ataxia associated with degenerative thoracic myelopathy in Merino sheep. Aust Vet J. 1991;68(11):357–8.  https://doi.org/10.1111/j.1751-0813.1991.tb00735.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Baird JD, Mackenzie CD. Cerebellar hypoplasia and degeneration in part-Arab horses. Aust Vet J. 1974;50(1):25–8.  https://doi.org/10.1111/j.1751-0813.1974.tb09367.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Foley A, Grady J, Almes K, Patton K, Davis E. Cerebellar abiotrophy in a 6-year-old Arabian mare. Equine Vet Educ. 2011;23(3):130–4.  https://doi.org/10.1111/j.2042-3292.2010.00166.x.CrossRefGoogle Scholar
  53. 53.
    Sadaba SA, Madariaga GJ, Botto CM, Carino MH, Zappa ME, Garcia PP, et al. First report of cerebellar abiotrophy in an Arabian foal from Argentina. Open Vet J. 2016;6(3):259–62.  https://doi.org/10.4314/ovj.v6i3.17.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Inada S, Mochizuki M, Izumo S, Kuriyama M, Sakamoto H, Kawasaki Y, et al. Study of hereditary cerebellar degeneration in cats. Am J Vet Res. 1996;57(3):296–301.PubMedGoogle Scholar
  55. 55.
    Kemp J, McOrist S, Jeffrey M. Cerebellar abiotrophy in Holstein Friesian calves. Vet Rec. 1995;136(8):198.  https://doi.org/10.1136/vr.136.8.198.CrossRefPubMedGoogle Scholar
  56. 56.
    Deforest ME, Eger CE, Basrur PK. Hereditary cerebellar neuronal abiotrophy in a Kerry Blue Terrier dog. Can Vet J. 1978;19(7):198–202.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Olby N, Blot S, Thibaud JL, Phillips J, O'Brien DP, Burr J, et al. Cerebellar cortical degeneration in adult American Staffordshire Terriers. J Vet Intern Med. 2004;18(2):201–8.  https://doi.org/10.1111/j.1939-1676.2004.tb00161.x.CrossRefPubMedGoogle Scholar
  58. 58.
    Chieffo C, Stalis IH, Van Winkle TJ, Haskins ME, Patterson DF. Cerebellar Purkinje’s cell degeneration and coat color dilution in a family of Rhodesian Ridgeback dogs. J Vet Intern Med. 1994;8(2):112–6.  https://doi.org/10.1111/j.1939-1676.1994.tb03207.x.CrossRefPubMedGoogle Scholar
  59. 59.
    Coates JR, O'Brien DP, Kline KL, Storts RW, Johnson GC, Shelton GD, et al. Neonatal cerebellar ataxia in Coton de Tulear dogs. J Vet Intern Med. 2002;16(6):680–9.  https://doi.org/10.1111/j.1939-1676.2002.tb02408.x.CrossRefPubMedGoogle Scholar
  60. 60.
    Shearman JR, Cook RW, McCowan C, Fletcher JL, Taylor RM, Wilton AN. Mapping cerebellar abiotrophy in Australian Kelpies. Anim Genet. 2011;42(6):675–8.  https://doi.org/10.1111/j.1365-2052.2011.02199.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Kyostila K, Cizinauskas S, Seppala EH, Suhonen E, Jeserevics J, Sukura A, et al. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet. 2012;8(6):e1002759.  https://doi.org/10.1371/journal.pgen.1002759.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fenn J, Boursnell M, Hitti RJ, Jenkins CA, Terry RL, Priestnall SL, et al. Genome sequencing reveals a splice donor site mutation in the SNX14 gene associated with a novel cerebellar cortical degeneration in the Hungarian Vizsla dog breed. BMC Genet. 2016;17(1):123.  https://doi.org/10.1186/s12863-016-0433-y.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Brault LS, Cooper CA, Famula TR, Murray JD, Penedo MC. Mapping of equine cerebellar abiotrophy to ECA2 and identification of a potential causative mutation affecting expression of MUTYH. Genomics. 2011;97(2):121–9.  https://doi.org/10.1016/j.ygeno.2010.11.006.CrossRefPubMedGoogle Scholar
  64. 64.
    Scott EY, Penedo MC, Murray JD, Finno CJ. Defining trends in global gene expression in Arabian horses with cerebellar abiotrophy. Cerebellum. 2017;16(2):462–72.  https://doi.org/10.1007/s12311-016-0823-8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Scott EY, Woolard KD, Finno CJ, Penedo MCT, Murray JD. Variation in MUTYH expression in Arabian horses with cerebellar abiotrophy. Brain Res. 2018;1678:330–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91.  https://doi.org/10.1038/35081558.CrossRefPubMedGoogle Scholar
  67. 67.
    Miyata T, Nakajima K, Mikoshiba K, Ogawa M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci. 1997;17(10):3599–609.CrossRefPubMedGoogle Scholar
  68. 68.
    Wingate ME. SLD is not stuttering. J Speech Lang Hear Res. 2001;44(2):381–3.  https://doi.org/10.1044/1092-4388(2001/031).CrossRefPubMedGoogle Scholar
  69. 69.
    Salinas PC, Fletcher C, Copeland NG, Jenkins NA, Nusse R. Maintenance of Wnt-3 expression in Purkinje cells of the mouse cerebellum depends on interactions with granule cells. Development. 1994;120(5):1277–86.PubMedGoogle Scholar
  70. 70.
    Cerminara NL, Lang EJ, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16(2):79–93.  https://doi.org/10.1038/nrn3886.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Armstrong DM, Schild RF. A quantitative study of the Purkinje cells in the cerebellum of the albino rat. J Comp Neurol. 1970;139(4):449–56.  https://doi.org/10.1002/cne.901390405.CrossRefPubMedGoogle Scholar
  72. 72.
    Muller U, Heinsen H. Regional differences in the ultrastructure of purkinje cells of the rat. Cell Tissue Res. 1984;235(1):91–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Voogd J. Cerebellar zones: a personal history. Cerebellum. 2011;10(3):334–50.  https://doi.org/10.1007/s12311-010-0221-6.CrossRefPubMedGoogle Scholar
  74. 74.
    Nedelescu H, Abdelhack M. Comparative morphology of dendritic arbors in populations of Purkinje cells in mouse sulcus and apex. Neural Plast. 2013;2013:948587.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kim YS, Shin JH, Hall FS, Linden DJ. Dopamine signaling is required for depolarization-induced slow current in cerebellar Purkinje cells. J Neurosci. 2009;29(26):8530–8.  https://doi.org/10.1523/JNEUROSCI.0468-09.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ. Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol. 2012;590(2):273–88.  https://doi.org/10.1113/jphysiol.2011.221846.CrossRefPubMedGoogle Scholar
  77. 77.
    Wadiche JI, Jahr CE. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci. 2005;8(10):1329–34.  https://doi.org/10.1038/nn1539.CrossRefPubMedGoogle Scholar
  78. 78.
    Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci. 2006;26(46):12067–80.  https://doi.org/10.1523/JNEUROSCI.2905-06.2006.CrossRefPubMedGoogle Scholar
  79. 79.
    Lardelli RM, Schaffer AE, Eggens VR, Zaki MS, Grainger S, Sathe S, et al. Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet. 2017;49(3):457–64.  https://doi.org/10.1038/ng.3762.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Erica Yuki Scott
    • 1
  • Kevin Douglas Woolard
    • 2
  • Carrie J. Finno
    • 3
  • James D. Murray
    • 1
    • 3
    Email author
  1. 1.Department of Animal ScienceUniversity of California, DavisDavisUSA
  2. 2.Department of Pathology, Microbiology & ImmunologyUniversity of California, DavisDavisUSA
  3. 3.Department of Population Health and ReproductionUniversity of California, DavisDavisUSA

Personalised recommendations