Skip to main content
Log in

Malformation of the Posterior Cerebellar Vermis Is a Common Neuroanatomical Phenotype of Genetically Engineered Mice on the C57BL/6 Background

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

C57BL/6 mice exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the posterior vermis, indicative of neuronal migration defect during cerebellar development. Recognizing that many genetically engineered (GE) mouse lines are produced from C57BL/6 ES cells or backcrossed to this strain, we performed histological analyses and found that cerebellar heterotopia were a common feature present in the majority of GE lines on this background. Furthermore, we identify GE mouse lines that will be valuable in the study of cerebellar malformations including diverse driver, reporter, and optogenetic lines. Finally, we discuss the implications that these data have on the use of C57BL/6 mice and GE mice on this background in studies of cerebellar development or as models of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auerbach AB, Norinsky R, Ho W, Losos K, Guo Q, Chatterjee S, et al. No title. Transgenic Res. 2003;12:59–69.

    Article  CAS  PubMed  Google Scholar 

  2. Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, et al. FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A. 1991;88:2065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature. 1990;347:677–80.

    Article  CAS  PubMed  Google Scholar 

  4. Bowes C, Li T, Frankel WN, Danciger M, Coffin JM, Applebury ML, et al. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci U S A. 1993;90:2955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caley DW, Johnson C, Liebelt RA. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat. 1972;133:179–212.

    Article  CAS  PubMed  Google Scholar 

  6. Pittler SJ, Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A. 1991;88:8322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci U S A. 2006;103:3693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clapcote SJ. Deletion polymorphism of Disc1 is common to all 129 mouse substrains: implications for gene-targeting studies of brain function. Genetics. 2006;173:2407–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D, et al. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet. 2011;20:4666–83.

    Article  CAS  PubMed  Google Scholar 

  10. Ekelund J, Hennah W, Hiekkalinna T, Parker A, Meyer J, Lönnqvist J, et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry. 2004;9:1037–41.

    Article  CAS  PubMed  Google Scholar 

  11. Cannon TD, Hennah W, van Erp TGM, Thompson PM, Lonnqvist J, Huttunen M, et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry. 2005;62:1205–13.

    Article  CAS  PubMed  Google Scholar 

  12. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A. 2005;102:8627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wahlsten D, Metten P, Crabbe JC. Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res. 2003;971:47–54.

    Article  CAS  PubMed  Google Scholar 

  14. Noben-Trauth K, Zheng QY, Johnson KR. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet. 2003;35:21–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kane KL, Longo-Guess CM, Gagnon LH, Ding D, Salvi RJ, Johnson KR. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res. 2012;283:80–8.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson KR, Yu H, Ding D, Jiang H, Gagnon LH, Salvi RJ. Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res. 2010;268:85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sotomayor M, Weihofen WA, Gaudet R, Corey DP. Structural determinants of cadherin-23 function in hearing and deafness. Neuron. 2010;66:85–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka M, Marunouchi T. Abnormality in the cerebellar folial pattern of C57BL/6J mice. Neurosci Lett. 2005;390:182–6.

    Article  CAS  PubMed  Google Scholar 

  19. Mangaru Z, Salem E, Sherman M, Van Dine SE, Bhambri A, Brumberg JC, et al. Neuronal migration defect of the developing cerebellar vermis in substrains of C57BL/6 mice: cytoarchitecture and prevalence of molecular layer heterotopia. Dev Neurosci. 2013;35:28–39.

    Article  CAS  PubMed  Google Scholar 

  20. Van Dine SE, Siu NY, Toia A, Cuoco JA, Betz AJ, Bolivar VJ, et al. Spontaneous malformations of the cerebellar vermis: prevalence, inheritance, and relationship to lobule/fissure organization in the C57BL/6 lineage. Neuroscience. 2015;310:242–51.

    Article  PubMed  Google Scholar 

  21. Van Dine SE, Salem E, Patel DB, George E, Ramos RL. Axonal anatomy of molecular layer heterotopia of the cerebellar vermis. J Chem Neuroanat. 2013;47:90–5.

    Article  PubMed  Google Scholar 

  22. Ramos RL, Van Dine SE, George E, Patel D, Hoplight BJ, Leheste JR, et al. Molecular layer heterotopia of the cerebellar vermis in mutant and transgenic mouse models on a C57BL/6 background. Brain Res Bull. 2013;97:63–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev. 2007;2:26.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230:230–42.

    Article  CAS  PubMed  Google Scholar 

  25. Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, et al. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res. 2015;30:824–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Svenson KL, Ahituv N, Durgin RS, Savage H, Magnani PA, Foreman O, et al. A new mouse mutant for the LDL receptor identified using ENU mutagenesis. J Lipid Res. 2008;49:2452–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8:265–77.

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Cai C-L, Lin L, Qyang Y, Chung C, Monteiro RM, et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development. 2006;133:1575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Madisen L, Zwingman TA, Sunkin SM, SW O, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Q, Cichon J, Wang W, Qiu L. Lee S-JR, Campbell NR, et al. imaging neural activity using Thy1-GCaMP transgenic mice. Neuron. 2012;76:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramos RL, Smith PT, DeCola C, Tam D, Corzo O, Brumberg JC. Cytoarchitecture and transcriptional profiles of neocortical malformations in inbred mice. Cereb Cortex. 2008;18:2614–28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ramos RL, Siu NY, Brunken WJ, Yee KT, Gabel LA, Van Dine SEHB. Cellular and axonal constituents of neocortical molecular layer heterotopia. Dev Neurosci. 2014;36:477–89.

    Article  CAS  PubMed  Google Scholar 

  34. Harris JA, Oh SW, Zeng H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and cre driver mice. Curr. Protoc. Neurosci. 2012;Chapter 1:Unit 1.20:1–18.

  35. SW O, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, et al. A mesoscale connectome of the mouse brain. Nature. 2014;508:207–14.

    Article  Google Scholar 

  36. Kuan L, Li Y, Lau C, Feng D, Bernard A, Sunkin SM, et al. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. Methods. 2015;73:4–17.

    Article  CAS  PubMed  Google Scholar 

  37. Madisen L, Mao T, Koch H, Zhuo J, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci. 2012;15:793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 2015;85:942–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits. 2014;8:76.

  40. Ramos RL, Van Dine SE, Gilbert ME, Leheste JR, Torres G. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats. Cerebellum. 2015;14:624–31.

    Article  CAS  PubMed  Google Scholar 

  41. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci. 2007;27:9817–23.

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt EF, Kus L, Gong S, Heintz N. BAC Transgenic mice and the GENSAT database of engineered mouse strains. Cold Spring Harb Protoc 2013;2013(3). https://doi.org/10.1101/pdb.top073692.

  43. Gerfen CR, Paletzki R, Heintz NGENSATBAC. Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 2013;80:1368–83.

    Article  CAS  PubMed  Google Scholar 

  44. Shima Y, Sugino K, Hempel CM, Shima M, Taneja P, Bullis JB, et al. A mammalian enhancer trap resource for discovering and manipulating neuronal cell types. elife. 2016;5:e13503.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci. 1992;12:4151–72.

    CAS  PubMed  Google Scholar 

  46. Takayama C, Inoue Y. Morphological development and maturation of the GABAergic synapses in the mouse cerebellar granular layer. Brain Res Dev Brain Res. 2004;150:177–90.

    Article  CAS  PubMed  Google Scholar 

  47. Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, Huang Z, et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron. 2001;31:367–79.

    Article  CAS  PubMed  Google Scholar 

  48. Li YN, Radner S, French MM, Pinzón-Duarte G, Daly GH, Burgeson RE, et al. The γ3 chain of laminin is widely but differentially expressed in murine basement membranes: expression and functional studies. Matrix Biol. 2012;31:120–34.

    Article  PubMed  Google Scholar 

  49. Myshrall TD, Moore SA, Ostendorf AP, Satz JS, Kowalczyk T, Nguyen H, et al. Dystroglycan on radial glia end feet is required for pial basement membrane integrity and columnar organization of the developing cerebral cortex. J Neuropathol Exp Neurol. 2012;71:1047–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nguyen H, Ostendorf AP, Satz JS, Westra S, Ross-Barta SE, Campbell KP, et al. Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathol. Commun. 2013;1:58.

    Article  PubMed  PubMed Central  Google Scholar 

  51. He M, Tucciarone J, Lee S, Nigro MJ, Kim Y, Levine JM, et al. Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron. 2016;91(6):1228–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported in part by NIH grant R01-NS088667 (JHW); FS was supported in part by NIH training grant T32-NS007413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raddy L. Ramos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuoco, J.A., Esposito, A.W., Moriarty, S. et al. Malformation of the Posterior Cerebellar Vermis Is a Common Neuroanatomical Phenotype of Genetically Engineered Mice on the C57BL/6 Background. Cerebellum 17, 173–190 (2018). https://doi.org/10.1007/s12311-017-0892-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0892-3

Keywords

Navigation