Skip to main content
Log in

Impairments in Walking Ability, Dexterity, and Cognitive Function in Multiple Sclerosis Are Associated with Different Regional Cerebellar Gray Matter Loss

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Both histological and neuroimaging studies highlight the role of the cerebellum in multiple sclerosis (MS). There is at least some evidence for associations of cerebellar gray matter (GM) loss with motor and cognitive ability. We therefore correlated motor and cognitive ability scores (the multiple sclerosis functional composite MSFC) with regional cerebellar GM volumes. We used voxel-based morphometry (VBM) to assess the regional GM volume loss in a cohort of 45 MS patients. For the regression analysis, we used the clinical subscores of the multiple sclerosis functional composite (25-ft walk test (T25FW), nine-hole peg test (9HPT), paced auditory serial addition task (PASAT)). Decreased GM in distinct cerebellar areas was associated with different subscores of the MSFC in Larsell’s lobule VI with the T25FW (t = 5.16), in lobule IX with the 9HPT (t = 3.95), and in lobule IX with the PASAT (t = 4.81). Regional volume decrease in distinct cerebellar areas involved in motor and cognitive domains were associated with clinical impairment in these fields. Our data confirm the relationship between cerebellar GM volume loss and disability, extending the knowledge in the functional neuroanatomical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.

    Article  CAS  PubMed  Google Scholar 

  2. Filippi M, Rocca MA, Barkhof F, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2012;11:349–60.

    Article  PubMed  Google Scholar 

  3. Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.

    Article  PubMed  Google Scholar 

  4. Gilmore CP, Donaldson I, Bo L, Owens T, Lowe J, Evangelou N. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry. 2009;80:182–7.

    Article  CAS  PubMed  Google Scholar 

  5. Deppe M, Tabelow K, Kramer J, et al. Evidence for early, non-lesional cerebellar damage in patients with multiple sclerosis: DTI measures correlate with disability, atrophy, and disease duration. Mult Scler. 2015;

  6. Weier K, Till C, Fonov V, et al. Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler. 2015;

  7. Thurling M, Kahl F, Maderwald S, et al. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans. J Neurosci. 2015;35:1228–39.

    Article  PubMed  Google Scholar 

  8. Koziol LF, Budding D, Andreasen N, et al. Consensus paper: the cerebellum's role in movement and cognition. Cerebellum. 2014;13:151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  10. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59:1560–70.

    Article  PubMed  Google Scholar 

  11. Fischer JS, Rudick RA, Cutter GR, Reingold SC. The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society clinical outcomes assessment task force. Mult Scler. 1999;5:244–50.

    Article  CAS  PubMed  Google Scholar 

  12. Polman CH, Rudick RA. The multiple sclerosis functional composite: a clinically meaningful measure of disability. Neurology. 2010;74(Suppl 3):S8–15.

    Article  PubMed  Google Scholar 

  13. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11:805–21.

    Article  CAS  PubMed  Google Scholar 

  14. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.

    Article  CAS  PubMed  Google Scholar 

  16. Beck AT, Steer RA. Beck depression inventory (BDI). San Antonio: The Psychological Corporation Inc.; 1987.

    Google Scholar 

  17. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46:1121–3.

    Article  CAS  PubMed  Google Scholar 

  18. Ceccarelli A, Jackson JS, Tauhid S, et al. The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. AJNR Am J Neuroradiol. 2012;33:1579–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grothe M, Lotze M, Langner S, Dressel A. The role of global and regional gray matter volume decrease in multiple sclerosis. J Neurol. 2016;263:1137–45.

    Article  PubMed  Google Scholar 

  20. Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage. 2012;59:3774–83.

    Article  PubMed  Google Scholar 

  21. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  22. Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J Neurosci. 2005;25:8303–10.

    Article  CAS  PubMed  Google Scholar 

  23. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  24. Weier K, Banwell B, Cerasa A, et al. The role of the cerebellum in multiple sclerosis. Cerebellum. 2015;14:364–74.

    Article  PubMed  Google Scholar 

  25. Kutzelnigg A, Faber-Rod JC, Bauer J, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17:38–44.

    Article  PubMed  Google Scholar 

  26. Audoin B, Zaaraoui W, Reuter F, et al. Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:690–5.

    Article  PubMed  Google Scholar 

  27. Anderson VM, Fisniku LK, Altmann DR, Thompson AJ, Miller DH. MRI measures show significant cerebellar gray matter volume loss in multiple sclerosis and are associated with cerebellar dysfunction. Mult Scler. 2009;15:811–7.

    Article  CAS  PubMed  Google Scholar 

  28. Moroso A, Ruet A, Lamargue-Hamel D, et al. Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88:146–51.

    Article  PubMed  Google Scholar 

  29. D'Ambrosio A, Pagani E, Riccitelli GC, et al. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: an MRI sub-regional volumetric analysis. Mult Scler. 2016;1352458516674567

  30. Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci. 2004;5:241–9.

    Article  CAS  PubMed  Google Scholar 

  31. Cutter GR, Baier ML, Rudick RA, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122(Pt 5):871–82.

    Article  PubMed  Google Scholar 

  32. Sbardella E, Petsas N, Tona F, et al. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS One. 2013;8:e63250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Audoin B, Ibarrola D, Ranjeva JP, et al. Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp. 2003;20:51–8.

    Article  PubMed  Google Scholar 

  34. Valentino P, Cerasa A, Chiriaco C, et al. Cognitive deficits in multiple sclerosis patients with cerebellar symptoms. Mult Scler. 2009;15:854–9.

    Article  CAS  PubMed  Google Scholar 

  35. Moroso A, Ruet A, Deloire M, et al. Cerebellar assessment in early multiple sclerosis. Cerebellum. 2017;16:607–11.

    Article  PubMed  Google Scholar 

  36. Ruet A, Hamel D, Deloire MS, Charre-Morin J, Saubusse A, Brochet B. Information processing speed impairment and cerebellar dysfunction in relapsing-remitting multiple sclerosis. J Neurol Sci. 2014;347:246–50.

    Article  PubMed  Google Scholar 

  37. Archibald CJ, Wei X, Scott JN, et al. Posterior fossa lesion volume and slowed information processing in multiple sclerosis. Brain. 2004;127:1526–34.

    Article  PubMed  Google Scholar 

  38. Cerasa A, Valentino P, Chiriaco C, et al. MR imaging and cognitive correlates of relapsing-remitting multiple sclerosis patients with cerebellar symptoms. J Neurol. 2013;260:1358–66.

    Article  PubMed  Google Scholar 

  39. Weier K, Penner IK, Magon S, et al. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis. PLoS One. 2014;9:e86916.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33:127–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Grothe.

Ethics declarations

The study was approved by the local ethical committees and written informed consent from each subject was obtained prior to their enrolment.

Conflict of Interests

M. Grothe has received travel reimbursement from Novartis Pharma, Teva, and BiogenIdec and research grants from the Federal Ministry for Research and Education in Germany.

M. Lotze has received research grants from the German Research Foundation and the Federal Ministry for Research and Education in Germany.

S. Langner received institutional support from the University of Greifswald for investigator initiated studies.

A. Dressel has received research grants, speaker and consulting honoraria as well as travel reimbursement from Novartis Pharma, Bayer Schering, Teva, Sanofi Aventis, Genzyme, Merck Serono, and BiogenIdec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grothe, M., Lotze, M., Langner, S. et al. Impairments in Walking Ability, Dexterity, and Cognitive Function in Multiple Sclerosis Are Associated with Different Regional Cerebellar Gray Matter Loss. Cerebellum 16, 945–950 (2017). https://doi.org/10.1007/s12311-017-0871-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0871-8

Keywords

Navigation