Skip to main content
Log in

Neurocognitive Characterization of an SCA28 Family Caused by a Novel AFG3L2 Gene Mutation

  • Short Report
  • Published:
The Cerebellum Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002;58:702–8.

    Article  PubMed  Google Scholar 

  2. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–83.

    Article  PubMed  Google Scholar 

  3. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260:3134–43.

    Article  PubMed  Google Scholar 

  4. Braga-Neto P, Dutra LA, Pedroso JL, Barsottini OG. Cognitive dysfunction in spinocerebellar ataxia type 3: variable topographies and patterns. Mov Disord. 2014;29:156–7.

    Article  PubMed  Google Scholar 

  5. Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype—a review. Clin Genet. 2016;90:305–14.

    Article  CAS  PubMed  Google Scholar 

  6. Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain. 2006;129:235–42.

    Article  PubMed  Google Scholar 

  7. Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010;42:313–21.

    Article  PubMed  Google Scholar 

  8. Cagnoli C, Stevanin G, Brussino A, Barberis M, Mancini C, Margolis RL, et al. Missense mutations in the AFG3L2 proteolytic domain account for ∼1.5% of European autosomal dominant cerebellar ataxias. Hum Mutat. 2010;31:1117–24.

    Article  CAS  PubMed  Google Scholar 

  9. Banfi S, Bassi MT, Andolfi G, Marchitiello A, Zanotta S, Ballabio A, et al. Identification and characterization of AFG3L2, a novel paraplegin-related gene. Genomics. 1999;59:51–8.

    Article  CAS  PubMed  Google Scholar 

  10. Edener U, Wöllner J, Hehr U, Kohl Z, Schilling S, Kreuz F, et al. Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation. Eur J Hum Genet. 2010;18:965–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gorman GS, Pfeffer G, Griffin H, Blakely EL, Kurzawa-Akanbi M, Gabriel J, et al. Clonal expansion of secondary mitochondrial DNA deletions associated with spinocerebellar ataxia type 28. JAMA Neurol. 2015;72:106–11.

    Article  PubMed  Google Scholar 

  12. Löbbe AM, Kang JS, Hilker R, Hackstein H, Müller U, Nolte D. A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28. J Mol Neurosci. 2014;52:493–6.

    Article  PubMed  Google Scholar 

  13. Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C, et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum. 2008;7:184–8.

    Article  CAS  PubMed  Google Scholar 

  14. Musova Z, Kaiserova M, Kriegova E, Fillerova R, Vasovcak P, Santava A. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia. Cerebellum. 2014;13:331–7.

    Article  PubMed  Google Scholar 

  15. Qu J, Wu CK, Zuzuárregui JR, Hohler AD. A novel AFG3L2 mutation in a Somalian patient with spinocerebellar ataxia type 28. J Neurol Sci. 2015;358(1–2):530–1.

    Article  CAS  PubMed  Google Scholar 

  16. Smets K, Deconinck T, Baets J, Sieben A, Martin JJ, Smouts I, et al. Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28. Neurology. 2014;82:2092–100.

    Article  CAS  PubMed  Google Scholar 

  17. Svenstrup K, Nielsen TT, Aidt F, Rostgaard N, Duno M, Wibrand F, et al. SCA28: novel mutation in the AFG3L2 proteolytic domain causes a mild cerebellar syndrome with selective type-1 muscle fiber atrophy. Cerebellum. 2016; doi:10.1007/s12311-016-0765-1.

  18. Zühlke C, Mikat B, Timmann D, Wieczorek D, Gillessen-Kaesbach G, Bürk K. Spinocerebellar ataxia 28: a novel AFG3L2 mutation in a German family with young onset, slow progression and saccadic slowing. Cerebellum Ataxias. 2015; doi:10.1186/s40673-015-0038-7.

  19. Teive HAG, Arruda WO. Cognitive dysfunction in spinocerebellar ataxias. Dement Neuropsychol. 2009;3:180–7.

    Article  Google Scholar 

  20. Mathuranath PS, Nestor PJ, Berrios GE, Rakowitz W, Hodges JR. A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology. 55:1613–20.

  21. Nemeth D, Racsmany M, Konya A, Pleh C. Measurement methods of the capacity of working memory and their role in neuropsychological diagnostics. Hungarian Rev Psychol. 55:403–16.

  22. Lezak MD. Neuropsychological assessment. New York: Oxford University Press; 1995.

    Google Scholar 

  23. Benedict RHB. Brief visuospatial memory test—revised: professional manual. Lutz: Psychological Assessment Resources, Inc; 1997.

    Google Scholar 

  24. Isaacs EB, Vargha-Khadem F. Differential course of development of spatial and verbal memory span: a normative study. Br J Dev Psychol. 7:377–80.

  25. Daneman M, Blennerhassett A. How to assess the listening comprehension skills of prereaders. J Educ Psychol. 76:1372–81.

  26. Janacsek K, Tánczos T, Mészáros T, Nemeth D. The Hungarian version of listening span task. Hungarian Rev Psychol. 64:385–406.

  27. Troyer AK, Moscovitch M, Winocur G. Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology. 11:138–46.

  28. Cardebat D, Doyon B, Puel M, Goulet P, Joanette Y. Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg. 90:207–17.

  29. Heaton R, Chelune G, Talley J, Kay G, Curtiss G. Wisconsin card sorting test manual: revised and expanded. Psychological Assessment Resources Inc: Odessa; 1993.

    Google Scholar 

  30. Wilson B, Cockburn J, Baddelay A, Hiorns R. The development and validation of a test battery for detecting and monitoring everyday memory problems. J Clin Exp Neuropsychol. 11:855–70.

  31. Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19:203–14.

    Article  PubMed  Google Scholar 

  32. Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM. Cerebellar contributions to verbal working memory. Cerebellum. 2014;13:354–61.

    Article  PubMed  Google Scholar 

  33. Nagahama Y, Fukuyama H, Yamauchi H, Matsuzaki S, Konishi J, Shibasaki H, et al. Cerebral activation during performance of a card sorting test. Brain. 1996;119:1667–75.

    Article  PubMed  Google Scholar 

  34. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  35. Malm J, Kristensen B, Karlsson T, Carlberg B, Fagerlund M, Olsson T. Cognitive impairment in young adults with infratentorial infarcts. Neurology. 1998;51:433–40.

    Article  CAS  PubMed  Google Scholar 

  36. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand. 2000;102:363–70.

    Article  CAS  PubMed  Google Scholar 

  37. Fitzpatrick LE, Crowe SF. Cognitive and emotional deficits in chronic alcoholics: a role for the cerebellum? Cerebellum. 2013;12:520–33.

    Article  CAS  PubMed  Google Scholar 

  38. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  39. Riva D, Giorgi C. The cerebellum contributes to higher function during development: evidence from a series of children surgically treated for posterior fossa tumors. Brain. 2000;123:1051–61.

    Article  PubMed  Google Scholar 

  40. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15:369–91.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. 1st ed. New York: Springer-Verlag; 2009.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by KTIA Grant No. 13 NAP-A-II/17. Denes Zadori was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Klivenyi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Written informed consent was obtained from the patients for the publication of this study (institutional research committee registration number is 44/2016). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szpisjak, L., Nemeth, V.L., Szepfalusi, N. et al. Neurocognitive Characterization of an SCA28 Family Caused by a Novel AFG3L2 Gene Mutation. Cerebellum 16, 979–985 (2017). https://doi.org/10.1007/s12311-017-0870-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0870-9

Navigation