The Cerebellum

, Volume 16, Issue 4, pp 859–867 | Cite as

What Do We Know About the Influence of the Cerebellum on Walking Ability? Promising Findings from Transcranial Alternating Current Stimulation

  • Antonino Naro
  • Demetrio Milardi
  • Alberto Cacciola
  • Margherita Russo
  • Francesca Sciarrone
  • Gianluca La Rosa
  • Alessia Bramanti
  • Placido Bramanti
  • Rocco Salvatore CalabròEmail author
Original Paper


Several cerebellar functions related to upper limb motor control have been studied using non-invasive brain stimulation paradigms. We have recently shown that transcranial alternating current stimulation (tACS) may be a promising approach in shaping the plasticity of cerebellum-brain pathways in a safe and effective manner. This study aimed to assess whether cerebellar tACS at different frequencies may tune M1-leg excitability and modify gait control in healthy human subjects. To this end, we tested the effects of different cerebellar tACS frequencies over the right cerebellar hemisphere (at 10, 50, and 300 Hz, besides a sham-tACS) on M1-leg excitability, cerebellum-brain inhibition (CBI), and gait parameters in a sample of 25 healthy volunteers. Fifty and 300 Hz tACS differently modified M1-leg excitability and CBI from both lower limbs, without significant gait perturbations. We hypothesize that tACS aftereffect may depend on a selective entrainment of distinct cerebellar networks related to lower limb motor functions. Therefore, cerebellar tACS might represent a useful tool to modulate walking training in people with cerebellum-related gait impairment, given that tACS may potentially reset abnormal cerebellar circuitries.


Cerebellum-brain interaction Gait control Transcranial alternating current stimulation Cerebellum-brain inhibition Cortical excitability 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bastian AJ. Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol. 2011;21:596–601.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Witter L, De Zeeuw CI. Regional functionality of the cerebellum. Curr Opin Neurobiol. 2015;33:150–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Massion J. Postural control system. Curr Opin Neurobiol. 1994;4:877–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Kuo D, Speers R, Peterka RJ, Horak FB. Effect of altered sensory conditions on multivariate descriptors of human postural sway. Exp Brain Res. 1998;122:185–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114:1339–48.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bernard JA, Seidler RD. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum. 2013;12:721–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, Jaeggi SM, Buschkuehl M, Monk CS, Jonides J, Peltier SJ. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;6:31.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122:329–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21:1761–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC. Cerebellar modulation of human associative plasticity. J Physiol. 2012;590:2365–74.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21:1901–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Oulad Ben Taib N, Manto M. Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast 2013; 2013:613197.Google Scholar
  13. 13.
    Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD. Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol. 1991;441:57–72.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557:689–700.CrossRefPubMedGoogle Scholar
  15. 15.
    Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140:505–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101:58–66.CrossRefPubMedGoogle Scholar
  18. 18.
    Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13:121–38.CrossRefPubMedGoogle Scholar
  19. 19.
    Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stim. 2010;3:161–9.CrossRefGoogle Scholar
  20. 20.
    Groiss SJ, Ugawa Y. Cerebellum. In: Lozano AM, Hallet M, editors. Handbook of clinical neurology. Amsterdam: Elsevier; 2013. p. 643–53.Google Scholar
  21. 21.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Ugawa Y, Hanajima R, Kanazawa I. Motor cortex inhibition in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1994;93:225–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29:9115–22.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Koch G. Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol. 2010;25:159–63.PubMedGoogle Scholar
  25. 25.
    Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015;14:171–4.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    van Dun K, Bodranghien F, Manto M, Mariën P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum. 2016; doi: 10.1007/s12311-016-0840-7.PubMedGoogle Scholar
  28. 28.
    Naro A, Leo A, Russo M, Cannavò A, Milardi D, Bramanti P, Calabrò RS. Does transcranial alternating current stimulation induce cerebellum plasticity? Feasibility, safety and efficacy of a novel electrophysiological approach. Brain Stimul. 2016;9:388–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, Bramanti P, Calabrò RS. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct 2017;doi: 10.1007/s00429-016-1355-1.
  30. 30.
    Hoffman M, Schrader J, Applegate T, Koceja D. Unilateral postural control of the functionally dominant and non-dominant extremities of healthy subjects. J Athl Train. 1998;33:319–22.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Jayaram G, Santos L, Stinear JW. Spike-timing-dependent plasticity induced in resting lower limb cortex persists during subsequent walking. Brain Res. 2007;1153:92–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dutta A, Paulus W, Nitsche MA. Facilitating myoelectric control with transcranial direct current stimulation: a preliminary study in healthy humans. J Neuroengineering Rehabil. 2014;11:13.CrossRefGoogle Scholar
  34. 34.
    Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14:27–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Mottolese C, Richard N, Harquel S, Szathmari A, Sirigu A, Desmurget M. Mapping motor representations in the human cerebellum. Brain. 2013;136:330–42.CrossRefPubMedGoogle Scholar
  36. 36.
    Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short-term ankle visuomotor learning. Brain Stimul. 2013;6:966–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Grimaldi G, Argyropoulos GP, Bastian A, Mar C, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell JC, Tomlinson SP, Celnik P. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22:83–97.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol - Electromyogr Mot Control. 1996;101:58–66.CrossRefGoogle Scholar
  39. 39.
    Rampersad SM, Janssen AM, Lucka F, Aydin Ü, Lanfer B, Lew S, Wolters CH, Stegeman DF, Oostendorp TF. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22:441–52.CrossRefPubMedGoogle Scholar
  40. 40.
    Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 2013;35:500–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Mehta AR, Brittain JS, Brown P. The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci. 2014;34:7501–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Noda T, Yamamoto T. Response properties and morphological identification of neurons in the cat motor cortex. Brain Res. 1984;306:197–206.CrossRefPubMedGoogle Scholar
  43. 43.
    Ando N, Izawa Y, Shinoda Y. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Neurophysiol. 1995;73:2470–85.PubMedGoogle Scholar
  44. 44.
    Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.PubMedGoogle Scholar
  45. 45.
    Uno M, Yoshida M, Hirota I. The mode of cerebello-thalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of cat’s thalamus. Exp Brain Res. 1970;10:121–39.CrossRefPubMedGoogle Scholar
  46. 46.
    Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, Kanazawa I. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997;104:453–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Shinoda Y, Kakei S, Futami T, Wannier T. Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex. 1993;3:421–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Panyakaew P, Cho HJ, Srivanitchapoom P, Popa T, Wu T, Hallett M. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. Eur J Neurosci. 2016;43:1075–81.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Frysinger RC, Bourbonnais D, Kalaska JF, Smith AM. Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1984;51:32–49.PubMedGoogle Scholar
  50. 50.
    Hull CA, Chu Y, Thanawala M, Regehr WG. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J Neurosci. 2013;33:5895–902.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Iwata NK, Hanajima R, Furubayashi T, Terao Y, Uesugi H, Shiio Y, Enomoto H, Mochizuki H, Kanazawa I, Ugawa Y. Facilitatory effect on the motor cortex by electrical stimulation over the cerebellum in humans. Exp Brain Res. 2004;159:418–24.CrossRefPubMedGoogle Scholar
  52. 52.
    Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during split belt treadmill walking. J Neurosci. 2006;26:9107–16.CrossRefPubMedGoogle Scholar
  53. 53.
    Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107:2950–7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    D'Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:116.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, Krueger G. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. 2009;4:e5101.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kwon HG, Hong JH, Hong CP, Lee DH, Ahn SH, Jang SH. Dentatorubrothalamic tract in human brain: diffusion tensor tractography study. Neuroradiology. 2011;53:787–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Palesi F, Tournier J-D, Calamante F, Muhlert N, Castellazzi G, Chard D, D'Angelo E, Wheeler-Kingshott CA. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct. 2015;220:3369–84.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Antonino Naro
    • 1
  • Demetrio Milardi
    • 1
    • 2
  • Alberto Cacciola
    • 1
  • Margherita Russo
    • 1
  • Francesca Sciarrone
    • 1
  • Gianluca La Rosa
    • 1
  • Alessia Bramanti
    • 1
  • Placido Bramanti
    • 1
  • Rocco Salvatore Calabrò
    • 1
    Email author
  1. 1.IRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly
  2. 2.Department of Biomedical, Dental Sciences, and Morphological and Functional ImagesUniversity of Messina (Italy)MessinaItaly

Personalised recommendations