Advertisement

The Cerebellum

, Volume 16, Issue 4, pp 802–811 | Cite as

Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer

  • Jennifer Claire Robinson
  • C. Andrew Chapman
  • Richard Courtemanche
Original Paper

Abstract

Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5–15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.

Keywords

Electrical synapses Cerebellar cortex Brain waves Electrophysiology Oscillations 

Notes

Acknowledgements

The authors wish to thank Drs. Clément Léna, Daniela Popa, and Stéphane Dieudonné for their helpful discussions and Ariana Frederick for her help in figure preparation. We also acknowledge the technical contribution of Ricardo Ortiz-Pulido in preliminary experiments.

Compliance with Ethical Standards

Experimental procedures conformed to the guidelines of the Canadian Council on Animal Care and the Concordia University Animal Research Ethics Committee.

Funding

This work profited from grants from the NAAR/Autism Speaks (USA) and the Natural Sciences and Engineering Research Council of Canada to RC and from the Concordia VPRGS Seed Fund to RC and CAC. Both are members of the FRQS Groupe de Recherche en Neurobiologie Comportementale (CSBN).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Buzsaki G. Rhythms of the brain. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  3. 3.
    Moser E, Corbetta M, Desimone R, Frégnac Y, Fries P, Graybiel AM, Haynes JD, Itti L, Melloni L, Monyer H, Singer W, von der Marlsburg C, Wilson M. Coordination in brain systems. In: von der Marlsburg C, Phillips WA, Singer W, editors. Dynamic coordination in the brain: from neurons to mind. Cambridge: MIT Press; 2010. p. 193–214.CrossRefGoogle Scholar
  4. 4.
    Maris E, Fries P, van Ede F. Diverse phase relations among neuronal rhythms and their potential function. Trends Neurosci. 2016;39:86–99. doi: 10.1016/j.tins.2015.12.004.CrossRefPubMedGoogle Scholar
  5. 5.
    Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88:220–35. doi: 10.1016/j.neuron.2015.09.034.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Buzsaki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64. doi: 10.1016/j.neuron.2013.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Helfrich RF, Herrmann CS, Engel AK, Schneider TR. Different coupling modes mediate cortical cross-frequency interactions. NeuroImage. 2015; doi: 10.1016/j.neuroimage.2015.11.035.PubMedGoogle Scholar
  8. 8.
    Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6:285–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17:649–55. doi: 10.1016/j.conb.2008.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    von Nicolai C, Engler G, Sharott A, Engel AK, Moll CK, Siegel M. Corticostriatal coordination through coherent phase-amplitude coupling. J Neurosci. 2014;34:5938–48. doi: 10.1523/JNEUROSCI.5007-13.2014.CrossRefGoogle Scholar
  11. 11.
    Chéron G, Marquez-Ruiz J, Dan B. Oscillations, timing, plasticity, and learning in the cerebellum. Cerebellum. 2016;15:122–38. doi: 10.1007/s12311-015-0665-9.CrossRefPubMedGoogle Scholar
  12. 12.
    O’Connor S, Berg RW, Kleinfeld D. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophysiol. 2002;87:2137–48.CrossRefPubMedGoogle Scholar
  13. 13.
    Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93:2039–52. doi: 10.1152/jn.00080.2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits. 2013;7:125. doi: 10.3389/fncir.2013.00125.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol. 1997;78:3502–7.PubMedGoogle Scholar
  16. 16.
    Hartmann MJ, Bower JM. Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol. 1998;80:1598–604.PubMedGoogle Scholar
  17. 17.
    Courtemanche R, Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol. 2002;88:771–82.PubMedGoogle Scholar
  18. 18.
    Dugué GP, Brunel N, Hakim V, Schwartz EJ, Chat M, Lévesque M, Courtemanche R, Léna C, Dieudonné S. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 2009;61:126–39.CrossRefPubMedGoogle Scholar
  19. 19.
    Eccles JC, Ito M, Szentágothai J. The cerebellum as a neuronal machine. New York: Spinger-Verlag; 1967.CrossRefGoogle Scholar
  20. 20.
    Dieudonné S. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol (London). 1998;510:845–66.CrossRefGoogle Scholar
  21. 21.
    Forti L, Cesana E, Mapelli J, D’Angelo E. Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J Physiol (London). 2006;574:711–29.CrossRefGoogle Scholar
  22. 22.
    Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar Golgi cells: simulations of their impact in vivo. Front Cell Neurosci. 2007;1:4. doi: 10.3389/neuro.03.004.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Edgley SA, Lidierth M. The discharges of cerebellar Golgi cells during locomotion in the cat. J Physiol. 1987;392:315–32.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vos BP, Volny-Luraghi A, De Schutter E. Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci. 1999;11:2621–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Holtzman T, Rajapaksa T, Mostofi A, Edgley SA. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol (London). 2006;574:491–507.CrossRefGoogle Scholar
  26. 26.
    D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L, Prestori F. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circuits. 2013;7:93. doi: 10.3389/fncir.2013.00093.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Galliano E, Mazzarello P, D’Angelo E. Discovery and rediscoveries of Golgi cells. J Physiol. 2010;588:3639–55. doi: 10.1113/jphysiol.2010.189605.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kanichay RT, Silver RA. Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J Neurosci. 2008;28:8955–67. doi: 10.1523/JNEUROSCI.5469-07.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cesana E, Pietrajtis K, Bidoret C, Isope P, D’Angelo E, Dieudonne S, Forti L. Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. J Neurosci. 2013;33:12430–46. doi: 10.1523/JNEUROSCI.4897-11.2013.CrossRefPubMedGoogle Scholar
  30. 30.
    Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer. PLoS Comput Biol. 2011;7:e1002087. doi: 10.1371/journal.pcbi.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Maex R, De Schutter E. Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog Brain Res. 2005;148:181–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA. Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 2010;67:435–51. doi: 10.1016/j.neuron.2010.06.028.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vervaeke K, Lorincz A, Nusser Z, Silver RA. Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science. 2012;335:1624–8. doi: 10.1126/science.1215101.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Szoboszlay M, Lorincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z. Functional properties of dendritic gap junctions in cerebellar Golgi cells. Neuron. 2016;90:1043–56. doi: 10.1016/j.neuron.2016.03.029.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudo G. Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev. 2000;32:72–85.CrossRefPubMedGoogle Scholar
  36. 36.
    Ray A, Zoidl G, Wahle P, Dermietzel R. Pannexin expression in the cerebellum. Cerebellum. 2006;5:189–92. doi: 10.1080/14734220500530082.CrossRefPubMedGoogle Scholar
  37. 37.
    Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron. 2001;31:477–85.CrossRefPubMedGoogle Scholar
  38. 38.
    Shimizu K, Stopfer M. Gap junctions. Curr Biol. 2013;23:R1026–R31.CrossRefPubMedGoogle Scholar
  39. 39.
    Simoes de Souza FM, De Schutter E. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations. Neural Systems and Circuits. 2011;1:1–19.CrossRefGoogle Scholar
  40. 40.
    Frederick A, Bourget-Murray J, Chapman CA, Amir S, Courtemanche R. Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat. Front Syst Neurosci. 2014;8:145. doi: 10.3389/fnsys.2014.00145.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M. Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci U S A. 2004;101:12364–9. doi: 10.1073/pnas.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bocian R, Posluszny A, Kowalczyk T, Golebiewski H, Konopacki J. The effect of carbenoxolone on hippocampal formation theta rhythm in rats: in vitro and in vivo approaches. Brain Res Bull. 2009;78:290–8. doi: 10.1016/j.brainresbull.2008.10.005.CrossRefPubMedGoogle Scholar
  43. 43.
    Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Bragin A, Hetke J, Wilson CL, Anderson DJ, Engel Jr J, Buzsaki G. Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification. J Neurosci Methods. 2000;98:77–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Johnson DE, Hilburn JL, Johnson JR. Basic electric circuit analysis. Englewood Cliffs: Prentice-Hall; 1986.Google Scholar
  46. 46.
    Farfan FD, Politti JC, Felice CJ. Evaluation of EMG processing techniques using information theory. Biomed Eng Online. 2010;9:72.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ozden I, Sullivan MR, Lee HM, Wang SS. Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci. 2009;29:10463–73. doi: 10.1523/JNEUROSCI.0967-09.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wolansky T, Clement EA, Peters SR, Palczak MA, Dickson CT. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci. 2006;26:6213–29.CrossRefPubMedGoogle Scholar
  49. 49.
    Bocian R, Posluszny A, Kowalczyk T, Kazmierska P, Konopacki J. Gap junction modulation of hippocampal formation theta and local cell discharges in anesthetized rats. Eur J Neurosci. 2011;33:471–81. doi: 10.1111/j.1460-9568.2010.07545.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang H, Lin SC, Nicolelis MA. Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. J Neurosci. 2010;30:13431–40. doi: 10.1523/JNEUROSCI.1144-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Steriade M. The intact and sliced brain. Cambridge: MIT Press; 2001.Google Scholar
  52. 52.
    Maex R, De Schutter E. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol. 1998;80:2521–37.PubMedGoogle Scholar
  53. 53.
    Mann-Metzer P, Yarom Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci. 1999;19:3298–306.PubMedGoogle Scholar
  54. 54.
    Maxeiner S, Kruger O, Schilling K, Traub O, Urschel S, Willecke K. Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice. Neuroscience. 2003;119:689–700.CrossRefPubMedGoogle Scholar
  55. 55.
    Koster-Patzlaff C, Hosseini SM, Reuss B. Loss of connexin36 in rat hippocampus and cerebellar cortex in persistent Borna disease virus infection. J Chem Neuroanat. 2009;37:118–27. doi: 10.1016/j.jchemneu.2008.10.004.CrossRefPubMedGoogle Scholar
  56. 56.
    Alcami P, Marty A. Estimating functional connectivity in an electrically coupled interneuron network. Proc Natl Acad Sci U S A. 2013;110:E4798–807. doi: 10.1073/pnas.1310983110.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Llinás RR, Walton KD, Lang EJ. Cerebellum. In: Shepherd GM, editor. The synaptic organization of the brain. New York: Oxford University Press; 2004. p. 271–309.CrossRefGoogle Scholar
  58. 58.
    Ito M. Cerebellar cortex. In: Shepherd GM, Grillner S, editors. Handbook of brain microcircuits. New York: Oxford University Press; 2010. p. 293–300.CrossRefGoogle Scholar
  59. 59.
    Jefferys JGR, Traub RD, Whittington MA. Neural networks for induced “40 Hz” rhythms. Trends Neurosci. 1996;19:202–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Traub RD, Duncan R, Russell AJ, Baldeweg T, Tu Y, Cunningham MO, Whittington MA. Spatiotemporal patterns of electrocorticographic very fast oscillations (> 80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia. 2010;51:1587–97. doi: 10.1111/j.1528-1167.2009.02420.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Bennett MV, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron. 2004;41:495–511.CrossRefPubMedGoogle Scholar
  62. 62.
    Tovar KR, Maher BJ, Westbrook GL. Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. J Neurophysiol. 2009;102:974–8. doi: 10.1152/jn.00060.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Martin FC, Handforth A. Carbenoxolone and mefloquine suppress tremor in the harmaline mouse model of essential tremor. Mov Disord. 2006;21:1641–9. doi: 10.1002/mds.20940.CrossRefPubMedGoogle Scholar
  64. 64.
    Bissiere S, Zelikowsky M, Ponnusamy R, Jacobs NS, Blair HT, Fanselow MS. Electrical synapses control hippocampal contributions to fear learning and memory. Science. 2011;331:87–91. doi: 10.1126/science.1193785.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    de Zeeuw CI, Hoebeek FE, Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron. 2008;58:655–8.CrossRefPubMedGoogle Scholar
  66. 66.
    D’Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 2009;162:805–15. doi: 10.1016/j.neuroscience.2009.01.048.CrossRefPubMedGoogle Scholar
  67. 67.
    D’Angelo E, de Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32:30–40.CrossRefPubMedGoogle Scholar
  68. 68.
    D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J Neurosci. 2001;21:759–70.PubMedGoogle Scholar
  69. 69.
    Mapelli L, Solinas S, D’Angelo E. Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit. Front Cell Neurosci. 2014;8:55. doi: 10.3389/fncel.2014.00055.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Nieus TR, Mapelli L, D’Angelo E. Regulation of output spike patterns by phasic inhibition in cerebellar granule cells. Front Cell Neurosci. 2014;8:246. doi: 10.3389/fncel.2014.00246.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kim J, Lee S, Tsuda S, Zhang X, Asrican B, Gloss B, Feng G, Augustine GJ. Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses. Cell Rep. 2014;7:1601–13. doi: 10.1016/j.celrep.2014.04.047.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ozol KO, Hawkes R. Compartmentation of the granular layer of the cerebellum. Histol Histopathol. 1997;12:171–84.PubMedGoogle Scholar
  73. 73.
    Courtemanche R, Chabaud P, Lamarre Y. Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci. 2009;3 doi: 10.3389/neuro.03.006.2009.
  74. 74.
    Sillitoe RV, Chung SH, Fritschy JM, Hoy M, Hawkes R. Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci. 2008;28:2820–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Barmack NH, Yakhnitsa V. Functions of interneurons in mouse cerebellum. J Neurosci. 2008;28:1140–52.CrossRefPubMedGoogle Scholar
  76. 76.
    Duguid I, Branco T, Chadderton P, Arlt C, Powell K, Hausser M. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition. Proc Natl Acad Sci U S A. 2015;112:13099–104. doi: 10.1073/pnas.1510249112.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ankri L, Husson Z, Pietrajtis K, Proville R, Lena C, Yarom Y, Dieudonne S, Uusisaari MY. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. elife. 2015;4 doi: 10.7554/eLife.06262.
  78. 78.
    Hull C, Regehr WG. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron. 2012;73:149–58. doi: 10.1016/j.neuron.2011.10.030.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Solinas S, Maex R, De Schutter E. Synchronization of Purkinje cell pairs along the parallel fiber axis: a model. Neurocomputing. 2007;52-54:97–102.CrossRefGoogle Scholar
  80. 80.
    Heine SA, Highstein SM, Blazquez PM. Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex. J Neurosci. 2010;30:17004–14. doi: 10.1523/JNEUROSCI.3513-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Courtemanche R, Frederick A. A spatiotemporal hypothesis on the role of 4- to 25-Hz field potential oscillations in cerebellar cortex. In: Heck D, editor. The neuronal codes of the cerebellum. London: Academic Press; 2015. p. 219–38.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jennifer Claire Robinson
    • 1
  • C. Andrew Chapman
    • 2
  • Richard Courtemanche
    • 1
  1. 1.Department of Exercise Science, and the FRQS Groupe de Recherche en Neurobiologie Comportementale (CSBN)Concordia UniversityMontrealCanada
  2. 2.Department of Psychology, and the FRQS Groupe de Recherche en Neurobiologie Comportementale (CSBN)Concordia UniversityMontrealCanada

Personalised recommendations