The Cerebellum

, Volume 16, Issue 3, pp 695–741 | Cite as

Targeting the Cerebellum by Noninvasive Neurostimulation: a Review

  • Kim van Dun
  • Florian Bodranghien
  • Mario Manto
  • Peter MariënEmail author


Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.


Cerebellum TMS tDCS Functional connectivity Motor Cognitive Affective Clinical 



Kim van Dun is a doctoral researcher involved in project G035714N granted by the Fund for Scientific Research Flanders (FWO). This research was also funded by a Strategic Research Program (SPR15) awarded by the Vrije Universiteit Brussel, Belgium.

Author’s Contributions

KvD searched the databases for relevant articles. The manuscript was drafted by KvD together with PM. MM and FB carefully read the manuscript and shared their expertise.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Janssen AM, Oostendorp TF, Stegeman DF. The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas. J NeuroEngineering Rehabil. 2015;12(1). Available from:
  2. 2.
    Sekino M, Hirata M, Sakihara K, Yorifuji S, Ueno S. Intensity and localization of eddy currents in transcranial magnetic stimulation to the cerebellum. IEEE Trans Magn. 2006;42(10):3575–7.CrossRefGoogle Scholar
  3. 3.
    Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–107.PubMedCrossRefGoogle Scholar
  4. 4.
    Bijsterbosch JD, Barker AT, Lee K-H, Woodruff PWR. Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Med Biol Eng Comput. 2012;50(7):671–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Janssen AM, Oostendorp TF, Stegeman DF. The effect of local anatomy on the electric field induced by TMS: evaluation at 14 different target sites. Med Biol Eng Comput. 2014;52(10):873–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimulat. 2014;7(5):643–9.CrossRefGoogle Scholar
  7. 7.
    Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev. 2013;37(5):766–89.PubMedCrossRefGoogle Scholar
  8. 8.
    Thut G, Ives JR, Kampmann F, Pastor MA, Pascual-Leone AA. new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Methods. 2005;141(2):207–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Iramina K, Maeno T, Kowatari Y, Ueno S. Effects of transcranial magnetic stimulation on EEG activity. IEEE Trans Magn. 2002;38(5):3347–9.CrossRefGoogle Scholar
  10. 10.
    Thut G, Miniussi C. New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci. 2009;13(4):182–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Iramina K, Maeno T, Nonaka Y, Ueno S. Measurement of evoked electroencephalography induced by transcranial magnetic stimulation. J Appl Phys. 2003;93(10):6718.CrossRefGoogle Scholar
  12. 12.
    Iramina K, Maeno T, Ueno S. Topography of EEG responses evoked by transcranial magnetic stimulation to the cerebellum. IEEE Trans Magn. 2004;40(4):2982–4.CrossRefGoogle Scholar
  13. 13.
    Arimatsu T, Sato H, Ge S, Ueno S, Iramina K. Measurements of BEG evoked by transcranial magnetic stimulation at various stimulus points on the head. In: Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007 NFSI-ICFBI 2007 Joint Meeting of the 6th International Symposium on [Internet]. IEEE; 2007 [cited 2016 Mar 14]. p. 334–7. Available from:
  14. 14.
    Iwahashi M, Koyama Y, Hyodo A, Hayami T, Ueno S, Iramina K. Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex. J Appl Phys. 2009;105(7):07B321.CrossRefGoogle Scholar
  15. 15.
    Schutter DJ, van Honk J. D’ Alfonso AA, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336(2):73–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Schutter DJ, van Honk J. An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. NeuroImage. 2006;33(4):1227–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Aftanas LI, Golocheikine SA. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett. 2001;310:557–60.CrossRefGoogle Scholar
  18. 18.
    Schutter DJ, van Honk J, d’Alfonso AA, Postma A, de Haan EH. Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport. 2001;12(3):445–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Vertes RP, Albo Z, Viana Di Prisco G. Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez’s circuit. Neuroscience. 2001;104:619–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD. Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol. 1991;441:57–72.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Werhahn KJ, Taylor J, Ridding MC, Meyer B-U, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101:58–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Siebner HR, Auer C, Roeck R, Conrad B. Trigeminal sensory input elicited by electric or magnetic stimulation interferes with the central motor drive to the intrinsic hand muscles. Clin Neurophysiol. 1999;110(6):1090–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerschlager W, Christensen LOD, Bestmann S, Rothwell JC. rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. Clin Neurophysiol. 2002;113(9):1435–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140(4):505–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Jenkins IH, Bain PG, Colebatch JG, Thompson PD, Findley LJ, Frackowiak RS, et al. A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol. 1993;34(1):82–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, van de Warrenburg BP, Rothwell JC, et al. Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res. 2011;209(3):437–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimulat. 2010;3(3):161–9.CrossRefGoogle Scholar
  29. 29.
    Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans: mechanisms of cerebellar inhibition. J Physiol. 2004;557(2):689–700.PubMedCrossRefGoogle Scholar
  30. 30.
    Lu M-K, Tsai C-H, Ziemann U. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci [Internet]. 2012 [cited 2016 Mar 14];6. Available from:
  31. 31.
    Sakihara K, Yorifuji S, Ihara A, Izumi H, Kono K, Takahashi Y, et al. Transcranial magnetic stimulation over the cerebellum evokes late potential in the soleus muscle. Neurosci Res. 2003;46(2):257–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsugi A, Mori N, Uehara S, Kamata N, Oku K, Mukai K, et al. Task dependency of the long-latency facilitatory effect on the soleus H-reflex by cerebellar transcranial magnetic stimulation. Neuroreport. 2014;25(17):1375–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Matsugi A, Mori N, Uehara S, Kamata N, Oku K, Okada Y, et al. Effect of cerebellar transcranial magnetic stimulation on soleus Ia presynaptic and reciprocal inhibition. Neuroreport. 2015;26(3):139–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Jayasekeran V, Rothwell J, Hamdy S. Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system: human cerebellum and swallowing. Neurogastroenterol Motil. 2011;23(9):831–e341.PubMedCrossRefGoogle Scholar
  35. 35.
    Vasant DH, Michou E, Mistry S, Rothwell JC, Hamdy S. High-frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability: repetitive cerebellar stimulation and swallowing motor excitability. J Physiol. 2015;593(22):4963–77.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Cho SS, Yoon EJ, Bang SA, Park HS, Kim YK, Strafella AP, et al. Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: a study with FDG PET. The. Cerebellum. 2012;11(3):739–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176(3):440–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Langguth B, Eichhammer P, Zowe M, Landgrebe M, Binder H, Sand P, et al. Modulating cerebello-thalamocortical pathways by neuronavigated cerebellar repetitive transcranial stimulation (rTMS). Neurophysiol. Clin Neurophysiol. 2008;38(5):289–95.CrossRefGoogle Scholar
  40. 40.
    Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119(11):2559–69.PubMedCrossRefGoogle Scholar
  41. 41.
    Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34(36):12049–56.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Harrington A, Hammond-Tooke GD. Theta burst stimulation of the cerebellum modifies the TMS-evoked N100 potential, a marker of GABA inhibition. Tremblay F. PLoS One. 2015;10(11):e0141284.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Picazio S, Ponzo V, Koch G. Cerebellar control on prefrontal-motor connectivity during movement inhibition. The Cerebellum [Internet]. 2015 Oct 19 [cited 2016 Mar 14]; Available from:
  44. 44.
    Farzan F, Pascual-Leone A, Schmahmann JD, Halko M. Enhancing the temporal complexity of distributed brain networks with patterned cerebellar stimulation. Sci Rep [Internet]. 2016 [cited 2016 May 20];6. Available from:
  45. 45.
    Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, et al. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG. NeuroImage. 2014;103:152–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study. J Neurophysiol. 2013;109(1):89–98.PubMedCrossRefGoogle Scholar
  47. 47.
    Farzan F, Barr MS, Hoppenbrouwers SS, Fitzgerald PB, Chen R, Pascual-Leone A, et al. The EEG correlates of the TMS-induced EMG silent period in humans. NeuroImage. 2013;83:120–34.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ. Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci. 2003;18(5):1206–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Spieser L, Meziane HB, Bonnard M. Cortical mechanisms underlying stretch reflex adaptation to intention: a combined EEG–TMS study. NeuroImage. 2010;52(1):316–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Oulad Ben Taib N, Manto M. Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats. Exp Neurol. 2008;212(1):157–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Nordmann G, Azorina V, Langguth B, Schecklmann M. A systematic review of non-motor rTMS induced motor cortex plasticity. Front Hum Neurosci [Internet]. 2015 Jul 21 [cited 2016 Mar 14];9. Available from:
  52. 52.
    Lo YL, Fook-Chong S, Chan LL, Ong WY. Cerebellar control of motor activation and cancellation in humans: an electrophysiological study. The. Cerebellum. 2009;8(3):302–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. The. Cerebellum. 2010;9(4):548–55.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Hashimoto M, Ohtsuka K. Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man. Brain. 1995;118(5):1185–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Colnaghi S, Ramat S, D’Angelo E, Cortese A, Beltrami G, Moglia A, et al. Theta-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans. The. Cerebellum. 2011;10(4):711–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Panouillères MTN, Neggers SFW, Gutteling TP, Salemme R, Stigchel S. Van der, van der Geest JN, et al. Transcranial magnetic stimulation and motor plasticity in human lateral cerebellum: dual effect on saccadic adaptation. Hum Brain Mapp. 2012;33(7):1512–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain. 1998;121(3):429–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Nagel M, Zangemeister W. The effect of transcranial magnetic stimulation over the cerebellum on the synkinesis of coordinated eye and head movements. J Neurol Sci. 2003;213(1–2):35–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Zangemeister W, Nagel WHZM. Transcranial magnetic stimulation over the cerebellum delays predictive head movements in the coordination of gaze. Acta Otolaryngol (Stockh). 2001;121(545):140–4.CrossRefGoogle Scholar
  60. 60.
    Haarmeier T, Kammer T. Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex. 2010;20(9):2234–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):e316.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Miall RC, King D. State estimation in the cerebellum. The. Cerebellum. 2008;7(4):572–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Hiraoka K, Horino K, Yagura A, Matsugi A, Cerebellar TMS. Evokes a long latency motor response in the hand during a visually guided manual tracking task. The. Cerebellum. 2010;9(3):454–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Matsugi A, Iwata Y, Mori N, Horino H, Hiraoka K. Long latency electromyographic response induced by transcranial magnetic stimulation over the cerebellum preferentially appears during continuous visually guided manual tracking task. The. Cerebellum. 2013;12(2):147–54.PubMedCrossRefGoogle Scholar
  65. 65.
    Matsugi A, Kamata N, Tanaka T, Hiraoka K. Long latency fluctuation of the finger movement evoked by cerebellar TMS during visually guided manual tracking task. Indian J Physiol Pharmacol. 2012;56(3):193–200.PubMedGoogle Scholar
  66. 66.
    Hosokawa S, Hirata M, Goto T, Yanagisawa T, Sugata H, Araki T, et al. Cerebellar-related long latency motor response in upper limb musculature by transcranial magnetic stimulation of the cerebellum. Neuroreport. 2014;25(6):353–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Schlerf JE, Galea JM, Bastian AJ, Celnik PA. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32(34):11610–7.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Hoffland BS, Bologna M, Kassavetis P, Teo JTH, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning: cTBS impairs EBCC. J Physiol. 2012;590(4):887–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Monaco J, Casellato C, Koch G, D’Angelo E. Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning. Eur J Neurosci. 2014;40(9):3363–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Li Voti P, Conte A, Rocchi L, Bologna M, Khan N, Leodori G, et al. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans. Eur J Neurosci. 2014;39(1):124–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Miall RC, Christensen LOD. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;371(2–3):185–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Baarbé J, Yielder P, Daligadu J, Behbahani H, Haavik H, Murphy BA. Novel protocol to investigate motor training-induced plasticity and sensorimotor integration in the cerebellum and motor cortex. J Neurophysiol. 2014;111(4):715–21.PubMedCrossRefGoogle Scholar
  74. 74.
    Rami L, Gironell A, Kulisevsky J. Garcı́a-Sánchez C, Berthier M, Estévez-González A. Effects of repetitive transcranial magnetic stimulation on memory subtypes: a controlled study. Neuropsychologia. 2003;41(14):1877–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex. 2012;48(6):718–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Argyropoulos GP. Cerebellar theta-burst stimulation selectively enhances lexical associative priming. The. Cerebellum. 2011;10(3):540–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Argyropoulos GP, Kimiskidis VK, Papagiannopoulos S. Theta-burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behav Neurosci. 2011;125(5):724–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Argyropoulos GP, Muggleton NG. Effects of cerebellar stimulation on processing semantic associations. The. Cerebellum. 2013;12(1):83–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Lesage E, Morgan BE, Olson AC, Meyer AS, Miall RC. Cerebellar rTMS disrupts predictive language processing. Curr Biol. 2012;22(18):R794–5.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen SHA, Heng GJ, Beng Ng TH, Eng GK, Kwok FY, Yin Lim JY, et al. Involvement of the inferior cerebellum in working memory: an fMRI-guided TMS study. Brain Stimulat. 2015;8:375–6.CrossRefGoogle Scholar
  82. 82.
    Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11.PubMedCrossRefGoogle Scholar
  83. 83.
    Torriero S, Oliveri M, Koch G, Gerfo EL, Salerno S, Ferlazzo F, et al. Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci. 2011;23(2):338–48.PubMedCrossRefGoogle Scholar
  84. 84.
    Arasanz CP, Staines WR, Schweizer TA. Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation. Front Behav Neurosci [Internet]. 2012 [cited 2016 Mar 14];6. Available from:
  85. 85.
    Oliver R, Opavsky R, Vyslouzil M, Greenwood R, Rothwell JC. The role of the cerebellum in “real” and “imaginary” line bisection explored with 1-Hz repetitive transcranial magnetic stimulation: line bisection and the cerebellum probed with TMS. Eur J Neurosci. 2011;33(9):1724–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Picazio S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Cerebellar contribution to mental rotation: a cTBS study. The. Cerebellum. 2013;12(6):856–61.PubMedCrossRefGoogle Scholar
  87. 87.
    Cattaneo Z, Renzi C, Casali S, Silvanto J, Vecchi T, Papagno C, et al. Cerebellar vermis plays a causal role in visual motion discrimination. Cortex. 2014;58:272–80.PubMedCrossRefGoogle Scholar
  88. 88.
    Oliveri M, Bonnì S, Turriziani P, Koch G, Lo Gerfo E, Torriero S, et al. Motor and linguistic linking of space and time in the cerebellum. Robertson E. PLoS One. 2009;4(11):e7933.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608(1):179–211.PubMedCrossRefGoogle Scholar
  90. 90.
    Fierro B, Palermo A, Puma A, Francolini M, Panetta ML, Daniele O, et al. Role of the cerebellum in time perception: a TMS study in normal subjects. J Neurol Sci. 2007;263(1–2):107–12.PubMedCrossRefGoogle Scholar
  91. 91.
    Lee K-H, Egleston PN, Brown WH, Gregory AN, Barker AT, Woodruff PW. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci. 2007;19(1):147–57.PubMedCrossRefGoogle Scholar
  92. 92.
    Koch G, Oliveri M, Torriero S, Salerno S, Gerfo EL, Caltagirone C, Repetitive TMS. Of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front Psychol [Internet]. 2010 [cited 2016 Mar 14];1. Available from:
  94. 94.
    Del Olmo MF, Cheeran B, Koch G, Rothwell JC. Role of the cerebellum in externally paced rhythmic finger movements. J Neurophysiol. 2007;98(1):145–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Théoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306(1):29–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Jäncke L, Steinmetz H, Benilow S, Ziemann U. Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res. 2004;155(2):196–203.PubMedCrossRefGoogle Scholar
  97. 97.
    Bijsterbosch JD, Lee K-H, Hunter MD, Tsoi DT, Lankappa S, Wilkinson ID, et al. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS. J Cogn Neurosci. 2011;23(5):1100–12.PubMedCrossRefGoogle Scholar
  98. 98.
    George MS, Wassermann EM, Williams WA, Steppel J, Pascual-Leone A, Basser PJ, et al. Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex. J Neuropsychiatry Clin Neurosci. 1996;8:172–80.PubMedCrossRefGoogle Scholar
  99. 99.
    Demirtas-Tatlidede A, Freitas C, Pascual-Leone A, Schmahmann JD. Modulatory effects of theta burst stimulation on cerebellar nonsomatic functions. The. Cerebellum. 2011;10(3):495–503.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Schutter DJ, Enter D, Hoppenbrouwers SS. High frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci JPN. 2009;34(1):60–5.PubMedGoogle Scholar
  101. 101.
    Schutter DJ, van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. The. Cerebellum. 2009;8(1):28–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Pastor MA, Thut G, Pascual-Leone A. Modulation of steady-state auditory evoked potentials by cerebellar rTMS. Exp Brain Res. 2006;175(4):702–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Lega C, Vecchi T, D’Angelo E, Cattaneo ZATMS. Investigation on the role of the cerebellum in pitch and timbre discrimination. Cerebellum Ataxias. 2016;3(6)Google Scholar
  104. 104.
    Schutter DJ, Kammers M, Enter D, Van Honk JA. Case of illusory own-body perceptions after transcranial magnetic stimulation of the cerebellum. The. Cerebellum. 2006;5(3):238–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Zunhammer M, Busch V, Griesbach F, Landgrebe M, Hajak G, Langguth B. rTMS over the cerebellum modulates temperature detection and pain thresholds through peripheral mechanisms. Brain Stimulat. 2011;4(4):210–7.e1.CrossRefGoogle Scholar
  106. 106.
    Shimizu H, Tsuda T, Shiga Y, Miyazawa K, Onodera Y, Matsuzaki M, et al. Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration. Tohoku J Exp Med. 1999;189:203–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Shiga Y, Tsuda T, Itoyama Y, Shimizu H, Miyazawa K, Jin K, et al. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry. 2002;72:124–6.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Farzan F, Wu Y, Manor B, Anastasio EM, Lough M, Novak V, et al. Cerebellar TMS in treatment of a patient with cerebellar ataxia: evidence from clinical, biomechanics and neurophysiological assessments. The. Cerebellum. 2013;12(5):707–12.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Lo YL, Fook-Chong S, Chan LL, Ong WY, Ratnagopal P. Electrophysiological evidence of cerebellar fiber system involvement in the Miller Fisher syndrome. J Neurol Sci. 2010;288(1–2):49–53.PubMedCrossRefGoogle Scholar
  110. 110.
    Kikuchi S, Mochizuki H, Moriya A, Nakatani-Enomoto S, Nakamura K, Hanajima R, et al. Ataxic hemiparesis: neurophysiological analysis by cerebellar transcranial magnetic stimulation. The. Cerebellum. 2012;11(1):259–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Groiss SJ, Ugawa Y. Cerebellar stimulation in ataxia. The. Cerebellum. 2012;11(2):440–2.PubMedCrossRefGoogle Scholar
  112. 112.
    Iwata N, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. The. Cerebellum. 2005;4(4):218–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol Potentials Sect. 1997;104(5):453–8.CrossRefGoogle Scholar
  114. 114.
    Bonnì S, Ponzo V, Caltagirone C, Koch G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct Neurol. 2014;29(1):41–5.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Gironell A, Kulisevsky J, Lorenzo J, Barbanoj M, Pascual-Sedano B, Otermin P. Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled study. Arch Neurol. 2002;59(3):413–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Popa T, Russo M, Vidailhet M, Roze E, Lehéricy S, Bonnet C, et al. Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: an open label trial. Brain Stimulat. 2013;6(2):175–9.CrossRefGoogle Scholar
  117. 117.
    Avanzino L, Bove M, Tacchino A, Ruggeri P, Giannini A, Trompetto C, et al. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci. 2009;30(10):1971–9.PubMedCrossRefGoogle Scholar
  118. 118.
    M-K L, Chiou S-M, Ziemann U, Huang H-C, Yang Y-W, Tsai C-H. Resetting tremor by single and paired transcranial magnetic stimulation in Parkinson’s disease and essential tremor. Clin Neurophysiol. 2015;126(12):2330–6.CrossRefGoogle Scholar
  119. 119.
    Pinto AD, Lang AE, Chen R. The cerebellothalamocortical pathway in essential tremor. Neurology. 2003;60(12):1985–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Ni Z, Pinto AD, Lang AE, Chen R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68(6):816–24.PubMedCrossRefGoogle Scholar
  121. 121.
    Carrillo F, Palomar FJ, Conde V, Diaz-Corrales FJ, Porcacchia P, Fernández-del-Olmo M, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimulat. 2013;6(4):582–9.CrossRefGoogle Scholar
  122. 122.
    Shirota Y, Hamada M, Hanajima R, Terao Y, Matsumoto H, Ohminami S, et al. Cerebellar dysfunction in progressive supranuclear palsy: a transcranial magnetic stimulation study. Mov Disord. 2010;25(14):2413–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Koch G, Brusa L, Carrillo F, Gerfo EL, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73(2):113–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Brusa L, Ceravolo R, Kiferle L, Monteleone F, Iani C, Schillaci O, et al. Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18(1):59–62.PubMedCrossRefGoogle Scholar
  125. 125.
    Minks E, Mareček R, Pavlík T, Ovesná P, Bareš MI. The cerebellum a potential target for stimulation in Parkinson’s disease? Results of 1-Hz rTMS on upper limb motor tasks. The. Cerebellum. 2011;10(4):804–11.PubMedCrossRefGoogle Scholar
  126. 126.
    Brusa L, Ponzo V, Mastropasqua C, Picazio S, Bonnì S, Di Lorenzo F, et al. Theta burst stimulation modulates cerebellar-cortical connectivity in patients with progressive supranuclear palsy. Brain Stimulat. 2014;7(1):29–35.CrossRefGoogle Scholar
  127. 127.
    Brighina F, Romano M, Giglia G, Saia V, Puma A, Giglia F, et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Koch G, Porcacchia P, Ponzo V, Carrillo F, Cáceres-Redondo MT, Brusa L, et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimulat. 2014;7(4):564–72.CrossRefGoogle Scholar
  129. 129.
    Odorfer T, Volkmann J, Zeller T. P172. Clinical and neurophysiological effects of cerebellar TMS in cervical dystonia. Clin Neurophysiol. 2015;126(8):e161–2.CrossRefGoogle Scholar
  130. 130.
    Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev. 2008;59(1):185–200.PubMedCrossRefGoogle Scholar
  131. 131.
    Koch G. Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol. 2010;25(3):159.PubMedGoogle Scholar
  132. 132.
    Di Lorenzo F, Martorana A, Ponzo V, Bonnì S, D’Angelo E, Caltagirone C, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients. Front Aging Neurosci [Internet]. 2013 [cited 2016 Mar 14];5. Available from:
  133. 133.
    Brighina F, Palermo A, Panetta ML, Daniele O, Aloisio A, Cosentino G, et al. Reduced cerebellar inhibition in migraine with Aura: a TMS study. The. Cerebellum. 2009;8(3):260–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Daligadu J, Haavik H, Yielder PC, Baarbe J, Murphy B. Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. J Manip Physiol Ther. 2013;36(8):527–37.CrossRefGoogle Scholar
  135. 135.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Fountain SI, Chen R. Reduced cerebellar inhibition in schizophrenia: a preliminary study. Am J Psychiatry. 2005;162(6):1203–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Brighina F, Daniele O, Piazza A, Giglia G, Fierro B. Hemispheric cerebellar rTMS to treat drug-resistant epilepsy: case reports. Neurosci Lett. 2006;397(3):229–33.PubMedCrossRefGoogle Scholar
  138. 138.
    Torriero S, Oliveri M, Koch G, Gerfo EL, Salerno S, Petrosini L, et al. Cortical networks of procedural learning: evidence from cerebellar damage. Neuropsychologia. 2007;45(6):1208–14.PubMedCrossRefGoogle Scholar
  139. 139.
    Kresyun NV, Godlevsky LS, Muratova TN. Retina functional recovering after photostress in diabetic patients under the conditions of cerebellar transcranial stimulation (TMS). Brain Stimulat. 2015;8:417–8.Google Scholar
  140. 140.
    Celnik P. Understanding and modulating motor learning with cerebellar stimulation. The. Cerebellum. 2015;14(2):171–4.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res. 2004;154(1):1–10.PubMedCrossRefGoogle Scholar
  142. 142.
    Schutter DJ, Van Honk J. A framework for targeting alternative brain regions with repetitive transcranial magnetic stimulation in the treatment of depression. J Psychiatry Neurosci JPN. 2005;30(2):91.PubMedGoogle Scholar
  143. 143.
    Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. The. Cerebellum. 2005;4(4):290–4.PubMedCrossRefGoogle Scholar
  144. 144.
    Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.PubMedCrossRefGoogle Scholar
  145. 145.
    Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–48.PubMedCrossRefGoogle Scholar
  146. 146.
    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro: modulation of neuronal function by electric fields. J Physiol. 2004;557(1):175–90.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(10):2238–47.PubMedCrossRefGoogle Scholar
  148. 148.
    McIntyre CC, Grill WM. Excitation of central nervous system neurons by nonuniform electric fields. Biophys J. 1999;76(2):878–88.PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107(7):1881–9.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects: somatic and terminal origin of DCS effects. J Physiol. 2013;591(10):2563–78.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Rahman A, Toshev PK, Bikson M. Polarizing cerebellar neurons with transcranial direct current stimulation. Clin Neurophysiol. 2014;125(3):435–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22(1):83–97.PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Ruohonen J, Karhu J. tDCS possibly stimulates glial cells. Clin Neurophysiol. 2012;123(10):2006–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Schlerf JE, Wiestler T, Verstynen T, Diedrichsen J. Big challenges from the little brain—imaging the cerebellum. In: Papageorgiou TD, Christopoulos GI, Smirnakis, editors. Advanced brain neuroimaging topics in health and disease—methods and applications. Rijeka (Croatia): InTech; 2014. p. 191–215.Google Scholar
  156. 156.
    Van Dun K, Bodranghien FCAA, Mariën P, Manto M. tDCS of the cerebellum: where do we stand in 2016? Technical Issues and Critical Review of the Literature. Front Hum Neurosci [Internet]. 2016 May 11 [cited 2016 May 19];10. Available from:
  157. 157.
    Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, et al. Cerebellar modulation of human associative plasticity: cerebellum and human associative plasticity. J Physiol. 2012;590(10):2365–74.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Strigaro G, Hamada M, Murase N, Cantello R, Rothwell JC. Interaction between different interneuron networks involved in human associative plasticity. Brain Stimulat. 2014;7(5):658–64.CrossRefGoogle Scholar
  159. 159.
    Butler EG, Horne MK, Rawson JA. Sensory characteristics of monkey thalamic and motor cortex neurones. J Physiol. 1992;445:1.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Wiesendanger M. Input from muscle and cutaneous nerves of the hand and forearm to neurones of the precentral gyrus of baboons and monkeys. J Physiol. 1973;228(1):203–19.PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Doeltgen SH, Young J, Bradnam LV. Anodal direct current stimulation of the cerebellum reduces cerebellar brain inhibition but does not influence afferent input from the hand or face in healthy adults. The. Cerebellum. 2015:1–9.Google Scholar
  162. 162.
    Chothia M, Doeltgen S, Bradnam LV. Anodal cerebellar direct current stimulation reduces facilitation of propriospinal neurons in healthy humans. Brain Stimulat [Internet]. 2016 Jan [cited 2016 Feb 16]; Available from:
  163. 163.
    Manto M. On the cerebello-cerebral interactions. The. Cerebellum. 2006;5(4):286–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Galea JM, Vazquez A, Pasricha N, Orban de Xivry J-J, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70.PubMedCrossRefGoogle Scholar
  165. 165.
    Block H, Celnik P. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. The. Cerebellum. 2013;12(6):781–93.PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Hardwick RM, Celnik PA. Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol Aging. 2014;35(10):2217–21.PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Yavari F, Mahdavi S, Towhidkhah F, Ahmadi-Pajouh M-A, Ekhtiari H, Darainy M. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp Brain Res. 2016;234(4):997–1012.PubMedCrossRefGoogle Scholar
  168. 168.
    Panouillères MTN, Joundi RA, Brittain J-S, Jenkinson N. Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation: restoring motor adaptation in older adults. J Physiol. 2015;593(16):3645–55.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Heuer H, Hegele M. Adaptation to visuomotor rotations in younger and older adults. Psychol Aging. 2008;23(1):190.PubMedCrossRefGoogle Scholar
  170. 170.
    Jayaram G, Tang B, Pallegadda R, Vasudevan EVL, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Avila E, van der Geest JN, Kengne Kamga S, Verhage MC, Donchin O, Frens MA. Cerebellar transcranial direct current stimulation effects on saccade adaptation. Neural Plast. 2015;2015:1–9.CrossRefGoogle Scholar
  172. 172.
    Panouillères MTN, Miall RC, Jenkinson N. The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study. J Neurosci. 2015;35(14):5471–9.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimulat. 2013;6(6):966–8.CrossRefGoogle Scholar
  174. 174.
    Thier W, Ludolph N, Ilg W, Timmann D. P75 transcranial direct current stimulation (tDCS) of the midline cerebellum does not facilitate learning of a complex whole body dynamic balance task. Clin Neurophysiol. 2015;126(8):e131.CrossRefGoogle Scholar
  175. 175.
    Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimulat. 2014;7(4):525–31.CrossRefGoogle Scholar
  176. 176.
    Herzfeld DJ, Pastor D, Haith AM, Rossetti Y, Shadmehr R, O’Shea J. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. NeuroImage. 2014;98:147–58.PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90.PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Wessel MJ, Zimerman M, Timmermann JE, Heise KF, Gerloff C, Hummel FC. Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb Cortex. 2016;26(4):1660–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Foerster Á, Rocha S, Wiesiolek C, Chagas AP, Machado G, Silva E, et al. Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning. Eur J Neurosci. 2013;37(5):786–94.PubMedCrossRefGoogle Scholar
  180. 180.
    Dutta A, Paulus W, Nitsche MA, others. Facilitating myoelectric-control with transcranial direct current stimulation: a preliminary study in healthy humans. J NeuroEngineering Rehabil. 2014;11(13).Google Scholar
  181. 181.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.PubMedCrossRefGoogle Scholar
  182. 182.
    Macher K, Boehringer A, Villringer A, Pleger B. Anodal cerebellar tDCS impairs verbal working memory. Clin Neurophysiol. 2013;124(10):e87–8.CrossRefGoogle Scholar
  183. 183.
    Macher K, Boehringer A, Villringer A, Pleger B. Cerebellar-parietal connections underpin phonological storage. J Neurosci. 2014;34(14):5029–37.PubMedCrossRefGoogle Scholar
  184. 184.
    Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimulat. 2013;6(4):649–53.CrossRefGoogle Scholar
  185. 185.
    Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulat. 2012;5(2):84–94.CrossRefGoogle Scholar
  186. 186.
    Van Wessel BWV, Verhage MC, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not affect performance in the N-back task. J Clin Exp Neuropsychol. 2016;38(3):319–26.PubMedCrossRefGoogle Scholar
  187. 187.
    Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.PubMedCrossRefGoogle Scholar
  188. 188.
    Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92.PubMedCrossRefGoogle Scholar
  189. 189.
    Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front Hum Neurosci [Internet]. 2015 Mar 26 [cited 2016 Jan 21];9(158). Available from:
  190. 190.
    Cattaneo Z, Lega C, Cecchetto C, Papagno C. Auditory deprivation affects biases of visuospatial attention as measured by line bisection. Exp Brain Res. 2014;232(9):2767–73.PubMedCrossRefGoogle Scholar
  191. 191.
    Lega C, Cattaneo Z, Merabet L, Vecchi T, Cucchi S. The effect of musical expertise on the representation of space. Front Hum Neurosci [Internet]. 2014 [cited 2016 Apr 13];8(250). Available from:
  192. 192.
    Stewart L, Walsh V. Music perception: sounds lost in space. Curr Biol. 2007;17(20):R892–3.PubMedCrossRefGoogle Scholar
  193. 193.
    Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99.PubMedCrossRefGoogle Scholar
  194. 194.
    Bocci T, Santarcangelo E, Vannini B, Torzini A, Carli G, Ferrucci R, et al. Cerebellar direct current stimulation modulates pain perception in humans. Restor Neurol Neurosci. 2015;33(5):597–609.PubMedGoogle Scholar
  195. 195.
    Bocci T, Barloscio D, Parenti L, Sartucci F, Carli G, Santarcangelo EL. High hypnotizability impairs the cerebellar control of pain. The Cerebellum [Internet]. 2016 Feb 5 [cited 2016 Feb 16]; Available from:
  196. 196.
    Chen J-C, Hämmerer D, D’Ostilio K, Casula EP, Marshall L, Tsai C-H, et al. Bi-directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: an event related potential study: modulation of sMMN with cerebellar TDCS. J Physiol. 2014;592(4):745–57.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Heath RG. Fastigial nucleus connections to the septal region in monkey andc at: a demonstration with evoked potentials of a bilateral pathway. Biol Psychiatry. 1973;6(2):193–6.PubMedGoogle Scholar
  198. 198.
    Heath RG. Correlation of brain function with emotional behavior. Biol Psychiatry. 1976;11:463.PubMedGoogle Scholar
  199. 199.
    Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45:268–87.PubMedCrossRefGoogle Scholar
  200. 200.
    Grimaldi G, Manto M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng. 2013;41(11):2437–47.PubMedCrossRefGoogle Scholar
  201. 201.
    Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci [Internet]. 2014 [cited 2016 Jan 21];8(9). Available from:
  202. 202.
    Gironell A, Martínez-Horta S, Aguilar S, Torres V, Pagonabarraga J, Pascual-Sedano B, et al. Transcranial direct current stimulation of the cerebellum in essential tremor: a controlled study. Brain Stimulat. 2014;7:491–2.CrossRefGoogle Scholar
  203. 203.
    Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord. 2015;30(12):1701–5.PubMedCrossRefGoogle Scholar
  204. 204.
    Calzolari E, Bolognini N, Casati C, Marzoli SB, Vallar G. Restoring abnormal aftereffects of prismatic adaptation through neuromodulation. Neuropsychologia. 2015;74:162–9.PubMedCrossRefGoogle Scholar
  205. 205.
    Sadnicka A, Kassavetis P, Saifee TA, Pareés I, Rothwell JC, Edwards MJ. Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci. 2013;123(6):425–32.PubMedCrossRefGoogle Scholar
  206. 206.
    Bradnam LV, Frasca J, Kimberley TJ. Direct current stimulation of primary motor cortex and cerebellum and botulinum toxin a injections in a person with cervical dystonia. Brain Stimul basic Transl Clin res. Neuromodulation. 2014;7(6):909–11.Google Scholar
  207. 207.
    Bradnam LV, Graetz LJ, McDonnell MN, Ridding MC. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.PubMedCentralPubMedCrossRefGoogle Scholar
  208. 208.
    Ferrucci R, Cortese F, Bianchi M, Pittera D, Turrone R, Bocci T, et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum. 2016;15(1):43–7.PubMedCrossRefGoogle Scholar
  209. 209.
    Sadnicka A, Hamada M, Bhatia KP, Rothwell JC, Edwards MJ. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia: cerebellar stimulation and writing dystonia. Mov Disord. 2014;29(10):1304–7.PubMedCrossRefGoogle Scholar
  210. 210.
    Brunoni AR, Valiengo L, Baccaro A, Zanão TA, de Oliveira JF, Goulart A, et al. The sertraline vs electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 2013;70(4):383–91.PubMedCrossRefGoogle Scholar
  211. 211.
    Ho K-A, Bai S, Martin D, Alonzo A, Dokos S, Puras P, et al. A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. J Affect Disord. 2014;167:251–8.PubMedCrossRefGoogle Scholar
  212. 212.
    Bation R, Poulet E, Haesebaert F, Saoud M, Brunelin J. Transcranial direct current stimulation in treatment-resistant obsessive–compulsive disorder: an open-label pilot study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;65:153–7.CrossRefGoogle Scholar
  213. 213.
    Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, et al. Prefrontocerebellar transcranial direct current stimulation increases amplitude and decreases latency of P3b component in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;(11):2913–7.Google Scholar
  214. 214.
    Minichino A, Bersani FS, Bernabei L, Spagnoli F, Vergnani L, Corrado A, et al. Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2265–70.PubMedCentralPubMedGoogle Scholar
  215. 215.
    Martin DM, Chan H-N, Alonzo A, Green MJ, Mitchell PB, Loo CK. Transcranial direct current stimulation to enhance cognition in euthymic bipolar disorder. Bipolar Disord. 2015;17(8):849–58.PubMedCrossRefGoogle Scholar
  216. 216.
    Heath RG. Modulation of emotion with a brain pacemaker: treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165(5):300–17.PubMedCrossRefGoogle Scholar
  217. 217.
    Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRefGoogle Scholar
  218. 218.
    Antal A, Keeser D, Priori A, Padberg F, Nitsche MA. Conceptual and procedural shortcomings of the systematic review “Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review” by Horvath and Co-workers. Brain Stimulat. 2015;8(4):846.CrossRefGoogle Scholar
  219. 219.
    Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg. 2016;124(5):1406–12.PubMedCrossRefGoogle Scholar
  220. 220.
    Bastian AJ, Mink JW, Kaufman BA, Thach WT. Posterior vermal split syndrome. Ann Neurol. 1998;44(4):601–10.PubMedCrossRefGoogle Scholar
  221. 221.
    Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. NeuroImage. 2014;85:918–23.PubMedCrossRefGoogle Scholar
  222. 222.
    Müller N, Lorenz I, Langguth B, Weisz N. rTMS induced tinnitus relief is related to an increase in auditory cortical alpha activity. Mouraux A, editor. PLoS ONE. 20138(2):e55557.Google Scholar
  223. 223.
    Manto M, Hampe CS, Rogemond V, Honnorat J. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet J Rare Dis. 2011;6(3)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kim van Dun
    • 1
  • Florian Bodranghien
    • 2
  • Mario Manto
    • 2
    • 3
  • Peter Mariën
    • 1
    • 4
    Email author
  1. 1.Clinical and Experimental NeurolinguisticsVrije Universiteit BrusselBrusselsBelgium
  2. 2.Unité d’Etude du Mouvement, Laboratoire de Neurologie ExpérimentaleUniversité libre de Bruxelles (ULB)BrusselsBelgium
  3. 3.Service des NeurosciencesUniversité de MonsMonsBelgium
  4. 4.Department of Neurology and Memory ClinicZNA Middelheim General HospitalAntwerpBelgium

Personalised recommendations