Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.
CAS
PubMed
Article
Google Scholar
Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11(2):505–25.
PubMed
Article
Google Scholar
Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.
PubMed
PubMed Central
Article
Google Scholar
Caligiore D, Pezzulo G, Miall RC, Baldassarre G. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neurosci Biobehav R. 2013;37(10):2504–15.
Article
Google Scholar
Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9(1):357–81.
CAS
PubMed
Article
Google Scholar
Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31(2):236–50.
CAS
PubMed
Article
Google Scholar
Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol. 2005;15(6):638–44.
CAS
PubMed
Article
Google Scholar
Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–76.
CAS
PubMed
Article
Google Scholar
Pezzulo G, Rigoli F, Friston K. Active Inference, homeostatic regulation and adaptive behavioural control. Prog Neurobiol. 2015. doi:10.1016/j.pneurobio.2015.09.001.
PubMed
PubMed Central
Google Scholar
Baldassarre G, Caligiore D, Mannella F. The hierarchical organisation of cortical and basal-ganglia systems: a computationally-informed review and integrated hypothesis. In: Baldassarre G, Mirolli M, editors. Computational and robotic models of the hierarchical organization of behavior. Berlin: Springer; 2013. p. 237–70.
Chapter
Google Scholar
Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1):191–7.
CAS
PubMed
Article
Google Scholar
Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.
CAS
PubMed
Article
Google Scholar
Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107(18):8452–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pelzer EA, Hintzen A, Goldau M, Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14.
PubMed
Article
Google Scholar
Houk JC, Buckingham JT, Barto AG. Models of the cerebellum and motor learning. Behav Brain Sci. 1996;19(3):368–83.
Article
Google Scholar
Kawato M, Kuroda S, Schweighofer N. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control. Cur Opin Neurobiol. 2011;21(5):791–800.
CAS
Article
Google Scholar
Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G. Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci. 2013;33(33):13436–40.
CAS
PubMed
Article
Google Scholar
Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. J Cognitive Neurosci. 2013;15(1):154–5.
Google Scholar
Caligiore D, Borghi AM, Parisi D, Baldassarre G. Affordances and compatibility effects: a neural-network computational model. In: Mayor J, Ruh N, Plunkett K editors. Connectionist models of behaviour and cognition II: Proceedings of the 11th Neural Computation and Psychology Workshop. Singapore: World Scientific; 2008. p. 15–26
Caligiore D, Borghi AM, Parisi D, Baldassarre G. TRoPICALS: a computational embodied neuroscience model of compatibility effects. Psychol Rev. 2010;117(4):1188.
PubMed
Article
Google Scholar
Hikosaka O, Nakamura K, Sakai K, Nakahara H. Central mechanisms of motor skill learning. Cur Opin Neurobiol. 2002;12(2):217–22.
CAS
Article
Google Scholar
Redgrave P, Gurney K. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci. 2006;7(12):967–75.
CAS
PubMed
Article
Google Scholar
Hua SE, Houk JC. Cerebellar guidance of premotor network development and sensorimotor learning. Learn Memory. 1997;4(1):63–76.
CAS
Article
Google Scholar
Arbib MA, Schweighofer N, Thach WT. Modeling the cerebellum: from adaptation to coordination. In: Glencross DJ, Piek JP, editors. Motor control and sensory-motor integration: issues and directions. Amsterdam: North-Holland Elsevier Science; 1995. p. 11–36.
Chapter
Google Scholar
Schweighofer N, Arbib MA, Dominey PF. A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biol Cybern. 1996a;75:19–28.
Schweighofer N, Arbib MA, Dominey PF. A model of the cerebellum in adaptive control of saccadic gain. II. Simulation results. Biol Cybern. 1996b;75:29–36.
Penhune VB, Doyon J. Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage. 2005;26(3):801–12.
CAS
PubMed
Article
Google Scholar
Thoma P, Bellebaum C, Koch B, Schwarz M, Daum I. The cerebellum is involved in reward-based reversal learning. Cerebellum. 2008;7(3):433–43.
PubMed
Article
Google Scholar
Izawa J, Rane T, Donchin O, Shadmehr R. Motor adaptation as a process of reoptimization. J Neurosci. 2008;28(11):2883–91.
CAS
PubMed
PubMed Central
Article
Google Scholar
Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol. 2011;7(3):e1002012.
CAS
PubMed
PubMed Central
Article
Google Scholar
Galea JM, Vazquez A, Pasricha N, de Xivry JJO, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70.
PubMed
Article
Google Scholar
Scott SH. The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci. 2012;16(11):541–9.
PubMed
Article
Google Scholar
Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.
PubMed
Article
Google Scholar
Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.
PubMed
PubMed Central
Article
Google Scholar
Kishore A, Popa T, Meunier S. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease. Front Neurol. 2014;5:68. doi:10.3389/fneur.2014.00068.
Helmich RC, Hallett M, Deuschl G, Toni I, Bloem B. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135:3206–26.
PubMed
PubMed Central
Article
Google Scholar
Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709.
PubMed
Article
Google Scholar
Jahanshahi M et al. Self-initiated versus externally triggered movements. Brain. 1995;118:913–33.
PubMed
Article
Google Scholar
Caligiore D, Borghi AM, Parisi D, Ellis R, Cangelosi A, Baldassarre G. How affordances associated with a distractor object affect compatibility effects: a study with the computational model TRoPICALS. Psychol Res. 2013;77:7–19.
PubMed
Article
Google Scholar
Conte A, Khan N, Defazio G, Rothwell JC, Berardelli A. Pathophysiology of somatosensory abnormalities in Parkinson’s disease. Nat Rev Neurol. 2013;9:687–97.
CAS
PubMed
Article
Google Scholar
Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Cur Opin Neurobiol. 2000;10(6):732–9.
CAS
Article
Google Scholar
Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1573–83.
CAS
PubMed
PubMed Central
Article
Google Scholar
Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1006.
CAS
PubMed
Google Scholar
Percheron G, François C, Talbi B, Yelnik J, Fénelon G. The primate motor thalamus. Brain Res Rev. 1996;22:93–181.
CAS
PubMed
Article
Google Scholar
Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.
PubMed
Article
Google Scholar
Shinoda Y, Sugiuchi Y, Futami T, Izawa R. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol. 1992;67(3):547–60.
CAS
PubMed
Google Scholar
Holdefer RN, Houk JC, Miller LE. Movement-related discharges in the cerebellar nuclei persist after local injections of GABAa antagonists. J Neurophysiol. 2005;93(1):35–43.
CAS
PubMed
Article
Google Scholar
Glickstein M, May JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.
CAS
PubMed
Article
Google Scholar
Schmahmann JD, Pandya DN. Preluneate, occipitotemporal, and parahippocampal projections to the basis points in rhesus monkey. J Comp Neurol. 1993;337:94–112.
CAS
PubMed
Article
Google Scholar
Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.
CAS
PubMed
Google Scholar
Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.
PubMed
PubMed Central
Article
Google Scholar
Chen CH, Fremont R, Arteaga-Bracho EE, Khodakhah K. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci. 2014;17:1767–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Verschure PFMJ, Voegtlin T, Douglas RJ. Environmentally mediated synergy between perception and behaviour in mobile robots. Nature. 2003;425(6958):620–4.
CAS
PubMed
Article
Google Scholar
Verschure PFMJ, Pennartz CM, Pezzulo G. The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Phil Trans R Soc B. 2014;369(1655):20130483.
PubMed
PubMed Central
Article
Google Scholar
Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162(3):732–55.
CAS
PubMed
Article
Google Scholar
Medina JF, Repa JC, Mauk MD, LeDoux JE. Parallels between cerebellum-and amygdala-dependent conditioning. Nat Rev Neurosci. 2002;3(2):122–31.
CAS
PubMed
Article
Google Scholar
Jirenhed DA, Hesslow G. Are Purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum 2015:1–9.
Manto M et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.
PubMed
PubMed Central
Article
Google Scholar
Carrel AJ, Zbarska S, Zenitsky GD, Bracha V. A trigeminal conditioned stimulus yields fast acquisition of cerebellum-dependent conditioned eyeblinks. Behav Brain Sci. 2012;226(1):189–96.
Google Scholar
Troncoso J, Múnera A, Delgado-García JM. Classical conditioning of eyelid and mystacial vibrissae responses in conscious mice. Learn Memory. 2004;11(6):724–6.
Article
Google Scholar
Green JT, Steinmetz JE. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning. Learn Memory. 2005;12(3):260–9.
Article
Google Scholar
Hesslow G, Yeo CH. The functional anatomy of skeletal conditioning. In: Moore JW, editor. A neuroscientist’s guide to classical conditioning. New York: Springer; 2002. p. 86–146.
Chapter
Google Scholar
McCormick DA, Thompson RF. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 1984;223(4633):296–9.
CAS
PubMed
Article
Google Scholar
Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–47.
CAS
PubMed
Article
Google Scholar
Herreros I, Verschure PFMJ. Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control. Neural Netw. 2013;47:64–71.
PubMed
Article
Google Scholar
Mauk MD, Ruiz BP. Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals. Behav Neurosci. 1992;106:1–16.
Article
Google Scholar
Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275.
Google Scholar
Heiney SA, Wohl MP, Chettih SN, Ruffolo LI, Medina JF. Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. J Neurosci. 2014;34(45):14845–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162(3):787–96.
CAS
PubMed
Article
Google Scholar
Gruart A, Schreurs BG, del Toro ED, Delgado-García J. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83(2):836–52.
CAS
PubMed
Google Scholar
Verschure PFMJ, Mintz M. A real-time model of the cerebellar circuitry underlying classical conditioning: a combined simulation and robotics study. Neurocomputing. 2001;38:1019–24.
Article
Google Scholar
Hesslow G, Ivarsson M. Inhibition of the inferior olive during conditioned responses in the decerebrate ferret. Exp Brain Res. 1996;110(1):36–46.
CAS
PubMed
Article
Google Scholar
Herreros I, Giovannucci A, Taub AH, Hogri R, Magal A, Bamford S, et al. A cerebellar neuroprosthetic system: computational architecture and in vivo test. Front Bioeng Biotechnol. 2014;2:14. doi:10.3389/fbioe.2014.00014.
Hofstötter C, Mintz M, Verschure PFMJ. The cerebellum in action: a simulation and robotics study. Eur J Neurosci. 2002;16(7):1361–76.
PubMed
Article
Google Scholar
Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ. Motor adaptation as a greedy optimization of error and effort. J Neurophysiol. 2007;97(6):3997–4006.
PubMed
Article
Google Scholar
Brandi S, Herreros I, Verschure PFMJ. Optimization of the anticipatory reflexes of a computational model of the cerebellum. In: Lepora NF, Mura A, Krapp HG, Verschure PFMJ, Prescott TJ, editors. Biomimetic and biohybrid systems. Berlin: Springer; 2014. p. 11–22.
Google Scholar
De Zeeuw CI et al. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol. 1989;284(1):12–35.
PubMed
Article
Google Scholar
Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nature Neurosc. 2015;18(12):1798–803.
CAS
Article
Google Scholar
Bengtsson F, Hesslow G. Cerebellar control of the inferior olive. Cerebellum. 2006;5(1):7–14.
CAS
PubMed
Article
Google Scholar
Oscarsson O. Functional organization of spinocerebellar paths. In: Iggo A, editor. Somatosensory system. Berlin: Springer; 1973. p. 339–80.
Chapter
Google Scholar
Shrestha SS et al. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J Physiol. 2012;590(Pt 7):1737–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Spanne A, Jörntell H. Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Comput Biol. 2013;9(3):e1002979.
CAS
PubMed
PubMed Central
Article
Google Scholar
Soderblom C et al. 3D imaging of axons in transparent spinal cords from rodents and nonhuman primates. Eneuro. 2015. doi:10.1523/ENEURO.0001-15.2015.
PubMed
PubMed Central
Google Scholar
Bortoff GA, Strick PL. Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci. 1993;13(12):5105–18.
CAS
PubMed
Google Scholar
Geborek P et al. A survey of spinal collateral actions of feline ventral spinocerebellar tract neurons. Eur J Neurosci. 2013;37(3):380–92.
CAS
PubMed
Article
Google Scholar
Azim E et al. Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature. 2014;508(7496):357–63.
CAS
PubMed
PubMed Central
Article
Google Scholar
Alstermark B et al. Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal also projecting to forelimb motoneurones. Exp Brain Res. 1981;42(3-4):282–98.
CAS
PubMed
Article
Google Scholar
Santello M, Baud-Bovy G, Jörntell H. Neural bases of hand synergies. Front Comput Neurosci. 2013;7:23.
PubMed
PubMed Central
Article
Google Scholar
Bengtsson F, Jörntell H. Specific relationship between excitatory inputs and climbing fiber receptive fields in deep cerebellar nuclear neurons. PLoS One. 2014;9(1):e84616.
PubMed
PubMed Central
Article
CAS
Google Scholar
Alstermark B, Isa T. Circuits for skilled reaching and grasping. Annu Rev Neurosci. 2012;35:559–78.
CAS
PubMed
Article
Google Scholar
Dean P et al. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43.
CAS
PubMed
Article
Google Scholar
Jörntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34(5):797–806.
PubMed
Article
Google Scholar
Geborek P et al. Cerebellar cortical neuron responses evoked from the spinal border cell tract. Front Neural Circuits. 2013;7:157.
PubMed
PubMed Central
Article
Google Scholar
Spanne A, Jörntell H. Questioning the role of sparse coding in the brain. Trends Neurosci. 2015;38:417–27.
CAS
PubMed
Article
Google Scholar
Jörntell H. Cerebellar synaptic plasticity and the credit assignment problem. Cerebellum. 2014. doi:10.1007/s12311-014-0623-y.
Houk JC. Agents of the mind. Biol Cybern. 2005;92:427–37.
PubMed
Article
Google Scholar
Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5:95–110.
CAS
PubMed
Article
Google Scholar
Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.
PubMed
Google Scholar
Houk JC, Adams JL, Barto AG. A model of how the basal ganglia generates and uses neural signals that predict reinforcement. In: Houk JC, Davis JL, Beiser DG, editors. Models of information processing in the basal ganglia. Cambridge, MA: MIT Press; 1995. p. 249–74.
Google Scholar
Merzenich MM, Sameshima K. Cortical plasticity and memory. Cur Opin Neurobiol. 1993;3:187–96.
CAS
Article
Google Scholar
Houk JC. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. In: Seth AK, Prescott TJ, Bryson JJ, editors. Modelling natural action selection. Cambridge: Cambridge University Press; 2012. p. 176–207.
Google Scholar
Gruber AJ, Solla SA, Surmeier DJ, Houk JC. Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol. 2003;90:1095–114.
PubMed
Article
Google Scholar
Ponzi A, Wickens JR. Optimal balance of the striatal medium spiny neuron network. PLoS Comput Biol. 2013;9:e1002954.
CAS
PubMed
PubMed Central
Article
Google Scholar
Goldman-Rakic PS. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–56.
CAS
PubMed
Article
Google Scholar
Wang J, Dam G, Yildirim S, Rand W, Wilensky U, Houk JC. Reciprocity between the cerebellum and the cerebral cortex: nonlinear dynamics in microscopic modules. Complexity. 2008;14:29–45.
Article
Google Scholar
Berthier NE, Singh SP, Barto AG, Houk JC. Distributed representation of limb motor programs in arrays of adjustable pattern generators. J Cogn Neurosci. 1993;5:56–78.
CAS
PubMed
Article
Google Scholar
Houk J, Mugnaini E. Cerebellum. In: Squire LR, Bloom FE, Roberts JL, McConnell SK, editors. Fundamental neuroscience. San Diego: Academic; 2003. p. 841–72.
Google Scholar
Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.
CAS
PubMed
Article
Google Scholar
Iacoboni M. Neural mechanisms of imitation. Curr Opin Neurobiol. 2005;15:632–7.
CAS
PubMed
Article
Google Scholar
Barto AG, Fagg AH, Sitkoff N, Houk JC. A cerebellar model of timing and prediction in the control of reaching. Neural Comput. 1999;11:565–94.
CAS
PubMed
Article
Google Scholar
Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12:961–74.
CAS
PubMed
Article
Google Scholar
Scheidt RA et al. Remembering forward: neural correlates of memory and prediction in human motor adaptation. Neuroimage. 2012;59:582–600.
PubMed
Article
Google Scholar
Houk JC. Voluntary movement: control, learning and memory. In: Koob GF, Le Moal M, Thompson RF, editors. Encyclopedia of behavioral neuroscience. Oxford: Academic; 2010. p. 455–8.
Chapter
Google Scholar
Reynolds JNJ, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 2002;15:507–21.
PubMed
Article
Google Scholar
White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A. 1998;95:6486–91.
CAS
PubMed
PubMed Central
Article
Google Scholar
Frank MJ, Seeberger LC, O’Reilly RC. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 2004;306:1940–3. doi:10.1126/science.1102941.
CAS
PubMed
Article
Google Scholar
Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci. 2010;14:154–61. doi:10.1016/j.tics.2010.01.006.
PubMed
PubMed Central
Article
Google Scholar
Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8:1704–11. doi:10.1038/nn1560.
CAS
PubMed
Article
Google Scholar
Glascher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95. doi:10.1016/j.neuron.2010.04.016.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497:74–9. doi:10.1038/nature12112.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sereno MI, Diedrichsen J, Tachrount M, Silva G, De Zeeuw CI. Reconstruction and unfolding of the human cerebellar cortex from high-resolution post-mortem MRI. Abst Soc Neurosci. 2014; Abstract No. 733.01, Washington D.C.
Marr D, Poggio T. From understanding computation to understanding neural circuitry. Artificial Intelligence Laboratory. A.I. Memo 1976; Massachusetts Institute of Technology. AIM-357.
Hardwick R, Daglioglou M, Miall RC. State estimation and the cerebellum. In: Manto M, Gruol D, Schmahmann J, Koibuchi N, Rossi F, editors. Handbook of cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1297–313.
Chapter
Google Scholar
Lesage E, Morgan BE, Olson AC, Meyer AS, Miall RC. Cerebellar rTMS disrupts predictive language processing. Cur Biol. 2012;22:R794.
CAS
Article
Google Scholar
D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, et al. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2011;66:5–15.
PubMed
Article
Google Scholar
Ito M. Error detection and representation in the olivo-cerebellar system. Front Neural Circuits. 2013;7:1.
PubMed
PubMed Central
Article
Google Scholar
Miall RC, Christensen LOD, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5:2733–44.
CAS
Article
Google Scholar
Galea JM, Mallia E, Rothwell J, Diedrichsen J. The dissociable effects of punishment and reward on motor learning. Nat Neurosci. 2015;18:597–602.
CAS
PubMed
Article
Google Scholar
Miall RC, Reckess GZ, Imamizu H. The cerebellum coordinates eye and hand tracking movements. Nat Neurosci. 2001;4:638–44.
CAS
PubMed
Article
Google Scholar
Albert NB, Robertson EM, Miall RC. The resting human brain and motor learning. Cur Biol. 2009;19:1023–7.
CAS
Article
Google Scholar
Pope P, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.
PubMed
PubMed Central
Article
Google Scholar
Pope P, Brenton J, Miall RC. Task-specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cereb Cortex. 2015.
Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.
CAS
PubMed
Article
Google Scholar
Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. Springer Science & Business Media 2009.
Clark A. Magic words: how language augments human computation. In: Carruthers P, Boucher J, editors. Language and thought: interdisciplinary themes. Cambridge: Cambridge University Press; 1998. p. 162–83.
Chapter
Google Scholar
Lakoff G, Johnson M. Philosophy in the flesh. New York: Basic Books; 1999.
Google Scholar
Barsalou LW. Perceptual symbol systems. Behav Brain Sci. 1999;22(4):577–609.
CAS
PubMed
Google Scholar
Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.
PubMed
PubMed Central
Article
Google Scholar
Borghi AM, Scorolli C, Caligiore D, Baldassarre G, Tummolini L. The embodied mind extended: using words as social tools. Front Psychol. 2013;4:214.
PubMed
PubMed Central
Article
Google Scholar
Caligiore D, Fischer MH. Vision, action and language unified through embodiment. Psychol Res. 2013;77(1):1–6.
PubMed
Article
Google Scholar
Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.
PubMed
Article
Google Scholar
Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.
CAS
PubMed
Article
Google Scholar
Pezzulo G, Castelfranchi C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res. 2009;73:559–77.
PubMed
Article
Google Scholar
Pezzulo G. An active inference view of cognitive control. Front Psychol. 2012;3:478.
PubMed
PubMed Central
Article
Google Scholar
Jeannerod M. Motor cognition. Oxford: University Press; 2006.
Book
Google Scholar
Cisek P, Kalaska JF. Neural correlates of mental rehearsal in dorsal premotor cortex. Nature. 2004;431:993–96.
CAS
PubMed
Article
Google Scholar
Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.
CAS
PubMed
Article
Google Scholar
Bonaiuto J, Arbib MA. Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biol Cybern. 2010;102:341–59.
PubMed
Article
Google Scholar
Boulenger V, Roy AC, Paulignan Y, Deprez V, Jeannerod M, Nazir TA. Cross-talk between language processes and overt motor behavior in the first 200 ms of processing. J Cogn Neurosci. 2006;18:1607–15.
PubMed
Article
Google Scholar
Meteyard L, Bahrami B, Vigliocco G. Motion detection and motion verbs language affects low-level visual perception. Psychol Sci. 2007;18(11):1007–13.
PubMed
Article
Google Scholar
Smith LB. Action alters shape categories. Cogn Sci. 2005;29:665–79.
PubMed
Article
Google Scholar
Ross BH, Wang RF, Kramer AF, Simons DJ, Crowell JA. Action information from classification learning. Psychon Bull Rev. 2007;14:500–4.
PubMed
Article
Google Scholar
Wexler M, Kosslyn SM, Berthoz A. Motor processes in mental rotation. Cognition. 1998;68:77–94.
CAS
PubMed
Article
Google Scholar
Seepanomwan K, Caligiore D, Cangelosi A, Baldassarre G. Generalisation, decision making, and embodiment effects in mental rotation: a neurorobotic architecture tested with a humanoid robot. Neural Netw. 2015;72:31–47.
PubMed
Article
Google Scholar
Sami S, Robertson EM, Miall RC. The time course of task-specific memory consolidation effects in resting state networks. J Neurosci. 2014;34:3982–92.
CAS
PubMed
PubMed Central
Article
Google Scholar
Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29:9115–22.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schlerf JE, Galea JM, Spampinato D, Celnik PA. Laterality differences in cerebellar-motor cortex connectivity. Cereb Cortex. 2015;25(7):1827–34.
Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137:1931–44.
PubMed
PubMed Central
Article
Google Scholar
Ugawa Y, Genba-Shimizu K, Rothwell JC, Iwata M, Kanazawa I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Ann Neurol. 1994;36:90–6.
CAS
PubMed
Article
Google Scholar
Jayaram G et al. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107:2950–7.
PubMed
PubMed Central
Article
Google Scholar
Herzfeld DJ et al. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. NeuroImage. 2014;98:147–58.
PubMed
PubMed Central
Article
Google Scholar
Schlerf JE, Galea JM, Bastian AJ, Celnik PA. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32:11610–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21:1901–9.
PubMed
PubMed Central
Article
Google Scholar
Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11:1185–92.
CAS
PubMed
PubMed Central
Article
Google Scholar
Haith AM, Krakauer JW. Model-based and model-free mechanisms of human motor learning. Adv Exp Med Biol. 2013;782:1–21.
PubMed
PubMed Central
Article
Google Scholar
Taylor JA, Ivry RB. Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Prog Brain Res. 2014;210:217–53.
PubMed
PubMed Central
Article
Google Scholar
Popa D, Spolidoro M, Proville R, Guyon N, Belliveau L, Léna C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6.
CAS
PubMed
Article
Google Scholar
Proville R, Spolidoro M, Guyon N, Dugué G, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17:1233–9.
CAS
PubMed
Article
Google Scholar
Wolpaw JR, Chen XY. The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn Mem. 2006;13:208–15.
PubMed
PubMed Central
Article
Google Scholar
Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23:305–14.
CAS
PubMed
Article
Google Scholar
Hamada M, Galea J, Lazzaro V, Mazzone P, Ziemann U, Rothwell J. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci. 2014;34:12837–49.
CAS
PubMed
Article
Google Scholar
Hubsch C, Roze E, Popa T, Russo M, Balachandran A, Pradeep S, et al. Defective cerebellar control of cortical plasticity in writer’s cramp. Brain. 2013;136:2050–62.
PubMed
PubMed Central
Article
Google Scholar
Sadnicka A, Hamada M, Bhatia KP, Rothwell JC, Edwards MJ. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord. 2014;29:1304–7.
PubMed
Article
Google Scholar
Linssen MW, van Gaalen J, Munneke MA, Hoffland BS, Hulstijn W, van de Warrenburg BP. A single session of cerebellar theta burst stimulation does not alter writing performance in writer’s cramp. Brain. 2015;138(Pt 6):e355. doi:10.1093/brain/awu321.
Meunier S, Popa T, Hubsch C, Roze E, Kishore A. Reply: a single session of cerebellar theta burst stimulation does not alter writing performance in writer’s cramp. Brain. 2015;138(Pt 6):e355. doi:10.1093/brain/awu321.
Huang Y-Z, Rothwell JC, Lu C-S, Chuang W-L, Chen R-S. Abnormal bidirectional plasticity-like effects in Parkinson’s disease. Brain. 2011;134:2312–20.
PubMed
Article
Google Scholar
Morgante F, Espay A, Gunraj C, Lang A, Chen R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain. 2006;129:1059–69.
PubMed
Article
Google Scholar
Kishore A, Popa T, Velayudhan B, Joseph T, Balachandran A, Meunier S. Acute dopamine boost has a negative effect on plasticity of the primary motor cortex in advanced Parkinson’s disease. Brain. 2012;135:2074–88.
PubMed
Article
Google Scholar
Kishore A, Popa T, Balachandran A, Chandran S, Pradeep S, Backer F, et al. Cerebellar sensory processing alterations impact motor cortical plasticity in Parkinson’s disease: clues from dyskinetic patients. Cereb Cortex. 2014;24:2055–67.
PubMed
Article
Google Scholar
Koch G, Brusa L, Carrillo F, Lo GE, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73:113–9.
CAS
PubMed
Article
Google Scholar
Heman P, Barcia C, Gómez A, Ros CM, Ros-Bernal F, Yuste JE, et al. Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys. Histol Histopathol. 2012;27:89–94.
CAS
PubMed
Google Scholar
Kishore A, Popa T. Cerebellum in levodopa-induced dyskinesias: the unusual suspect in the motor network. Front Neurol. 2014;5:157.
PubMed
PubMed Central
Google Scholar
Helmich RC, Janssen MJ, Oyen WJ, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69:269–81.
PubMed
Article
Google Scholar
Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50:381–425.
CAS
PubMed
Article
Google Scholar
Frank MJ. Computational models of motivated action selection in corticostriatal circuits. Curr Opin Neurobiol. 2011;21:381–6.
CAS
PubMed
Article
Google Scholar
Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man. Brain. 2000;123:1459–70.
PubMed
Article
Google Scholar
Groß J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: studying neural interactions in the human brain. PNAS. 2001;98:694–9.
PubMed
PubMed Central
Article
Google Scholar
Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K, et al. Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain 2015;138(Pt 10):2964–73. doi:10.1093/brain/awv215.
Isaias IU, Marzegan A, Pezzoli G, Marotta G, Canesi M, Biella GE, et al. A role for locus coeruleus in Parkinson tremor. Front Hum Neurosci. 2011;5:179. doi:10.3389/fnhum.2011.00179.
Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev. 1995;20:91–127.
CAS
PubMed
Article
Google Scholar
Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349:1925–34.
CAS
PubMed
Article
Google Scholar
Benabid AL, Pollak P, Hoffmann D, Gervason C, Hommel M, Perret JE, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.
CAS
PubMed
Article
Google Scholar
Hurtado JM, Gray CM, Tamas LB, Sigvardt KA. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci U S A. 1999;96:1674–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchison WD, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346:1383–7.
CAS
PubMed
Article
Google Scholar
Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci. 1999;19:1446–63.
CAS
PubMed
Google Scholar
Kultas-Ilinsky K, Sivan-Loukianova E, Ilinsky IA. Reevaluation of the primary motor cortex connections with the thalamus in primates. J Comp Neurol. 2003;457:133–58.
PubMed
Article
Google Scholar
Plaha P, Khan S, Gill SS. Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatr. 2008;79:504–13.
CAS
PubMed
Article
Google Scholar
Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, et al. Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology. 1996;46:1359–70.
CAS
PubMed
Article
Google Scholar
Caligiore D, Helmich R, Hallett M, Timmermann L, Toni I, Baldassarre G (in preparation). Abnormal interactions in the basal ganglia-cortex-cerebellum system produce Parkinson symptoms.
Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid-onset dystonia-parkinsonism. Nat Neurosci. 2011;14:357–65.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–84.
CAS
PubMed
Article
Google Scholar
Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680–3.
CAS
PubMed
Article
Google Scholar
Pezzulo G, van der Meer MA, Lansink CS, Pennartz C. Internally generated sequences in learning and executing goal-directed behavior. Trends Cogn Sci. 2014;18(12):647–57.
PubMed
Article
Google Scholar
Papengut F, Raethjen J, Binder A, Deuschl G. Rest tremor suppression may separate essential from parkinsonian rest tremor. Parkinsonism Relat Disord. 2013;19(7):693–7.
PubMed
Article
Google Scholar
Hallett M, Shahani BT, Young RR. Analysis of stereotyped voluntary movements at the elbow in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1977;40:1129–35.
CAS
PubMed
PubMed Central
Article
Google Scholar