Skip to main content
Log in

Climbing Fibers Mediate Vestibular Modulation of Both “Complex” and “Simple Spikes” in Purkinje Cells

  • Opinion Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a “complex spike” (CS). By logical exclusion, the other class of Purkinje cell action potential, termed “simple spike” (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8–10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9–10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Szentágothai J, Rajkovits K. Über den Ursprung der Kletterfasern des Kleinhirns. ZAnatEntwicklungsgesch. 1959;121:130–41.

    Google Scholar 

  2. Desclin JC. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 1974;77:365–84.

    Article  CAS  PubMed  Google Scholar 

  3. Sugihara I, Wu HS, Shinoda Y. The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci. 2001;21:7715–23.

    CAS  PubMed  Google Scholar 

  4. Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol. 1977;174:417–88.

    Article  CAS  PubMed  Google Scholar 

  5. Andersson G, Oscarsson O. Projections to lateral vestibular nucleus from cerebellar climbing fiber zones. Exp Brain Res. 1978;32:549–64.

    CAS  PubMed  Google Scholar 

  6. Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414:131–48.

    Article  CAS  PubMed  Google Scholar 

  7. Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411:97–118.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong DM, Harvey RJ, Schild RF. Distribution in the anterior lobe of the cerebellum of branches from climbing fibres to the paramedian lobule. Brain Res. 1971;25:203–6.

    Article  CAS  PubMed  Google Scholar 

  9. Palkovits M, Magyar P, Szentagothai J. Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-Purkinje cell numerical transfer. Brain Res. 1972;45:15–29.

    Article  CAS  PubMed  Google Scholar 

  10. Harvey RJ, Napper RM. Quantitative studies on the mammalian cerebellum. Prog Neurobiol. 1991;36:437–63.

    Article  CAS  PubMed  Google Scholar 

  11. Eccles JC, Llinás R, Sasaki K. The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol (Lond). 1966;182:268–96.

    Article  CAS  Google Scholar 

  12. Llinás R, Nicholson C. Reversal properties of climbing fiber potential in cat Purkinje cells: an example of a distributed synapse. J Neurophysiol. 1976;39:311–23.

    PubMed  Google Scholar 

  13. Korbo L, Andersen BB, Ladefoged O, Moller A. Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain Res. 1993;609:262–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hámori J, Szentágothai J. Lack of evidence of synaptic contacts by climbing fibre collaterals to basket and stellate cells in developing rat cerebellar cortex. Brain Res. 1980;186:454–7.

    Article  PubMed  Google Scholar 

  15. Midtgaard J. Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. J Physiol (Lond). 1992;457:355–67.

    Article  CAS  Google Scholar 

  16. Szapiro G, Barbour B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci. 2007;10:735–42.

    Article  CAS  PubMed  Google Scholar 

  17. Hámori J, Szentágothai J. Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study. Exp Brain Res. 1966;2:35–48.

    Article  PubMed  Google Scholar 

  18. Desclin JC. Early terminal degeneration of cerebellar climbing fibers after destruction of the inferior olive in the rat. Synaptic relationships in the molecular layer. Anat Embryol (Berl). 1976;149:87–112.

    Article  CAS  Google Scholar 

  19. Galliano E, Baratella M, Sgritta M, Ruigrok TJ, Haasdijk ED, Hoebeek FE, et al. Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Front Neural Circuits. 2013;7:59.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Schild RF. On the inferior olive of the Albino rat. J Comp Neurol. 1970;140:255–60.

    Article  CAS  PubMed  Google Scholar 

  21. Desclin JC, Escubi J. Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res. 1974;77:349–64.

    Article  CAS  PubMed  Google Scholar 

  22. Chan-Palay V, Palay SL. The stellate cells of the rat’s cerebellar cortex. ZAnatEntwicklungsgesch. 1972;136:224–48.

    CAS  Google Scholar 

  23. Dieudonné S. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol. 1998;510:845–66.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hull C, Regehr WG. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron. 2012;73:149–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fox CA, Hillman DE, Siegesmund KA, Dutta CR. The primate cerebellar cortex: a Golgi and electron microscopic study. In: Fox CA, Snider RS, editors. The cerebellum. Prog Brain Res. 1967;25:174–225.

  26. Cajal SR. Histologie du système nerveux de l’homme et des vertebrés. Maloine, Paris.

  27. Cohen D, Yarom Y. Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers. Proc Natl Acad Sci U S A. 1998;95:15032–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gundappa-Sulur G, De Schutter E, Bower JM. Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol. 1999;408:580–96.

    Article  CAS  PubMed  Google Scholar 

  29. Isope P, Barbour B. Properties of unitary granule cell–Purkinje cell synapses in adult rat cerebellar slices. J Neurosci. 2002;22:9668–78.

    CAS  PubMed  Google Scholar 

  30. Walter JT, Dizon MJ, Khodakhah K. The functional equivalence of ascending and parallel fiber inputs in cerebellar computation. J Neurosci. 2009;29:8462–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Andersen P, Eccles JC, Voorhoeve PE. Postsynaptic inhibition of cerebellar Purkinje cells. J Neurophysiol. 1964;27:1138–53.

    CAS  PubMed  Google Scholar 

  32. Pouzat C, Hestrin S. Developmental regulation of basket/stellate cell–Purkinje cell synapses in the cerebellum. J Neurosci. 1997;17:9104–12.

    CAS  PubMed  Google Scholar 

  33. Eccles JC, Llinás R, Sasaki K. The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res. 1966;1:82–101.

    CAS  PubMed  Google Scholar 

  34. Garthwaite J, Beaumont PS. Excitatory amino acid receptors in the parallel fibre pathway in rat cerebellar slices. Neurosci Lett. 1989;107:151–6.

    Article  CAS  PubMed  Google Scholar 

  35. Barbour B. Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron. 1993;11:759–69.

    Article  CAS  PubMed  Google Scholar 

  36. Barmack NH, Baughman RW, Errico P, Shojaku H. Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol. 1993;327:521–34.

    Article  CAS  PubMed  Google Scholar 

  37. Alley K, Baker R, Simpson JI. Afferents to the vestibulo-cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res. 1975;98:582–9.

    Article  CAS  PubMed  Google Scholar 

  38. Carpenter MB, Stein BM, Peter P. Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat. 1972;135:221–50.

    Article  CAS  PubMed  Google Scholar 

  39. Korte GE. The brainstem projection of the vestibular nerve in the cat. J Comp Neurol. 1979;184:279–92.

    Article  CAS  PubMed  Google Scholar 

  40. Purcell IM, Perachio AA. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil. J Comp Neurol. 2001;433:48–61.

    Article  CAS  PubMed  Google Scholar 

  41. Gerrits NM, Epema AH, Van Linge A, Dalm E. The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett. 1989;105:27–33.

    Article  CAS  PubMed  Google Scholar 

  42. Maklad A, Fritzsch B. Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res. 2003;140:223–36.

    Article  CAS  Google Scholar 

  43. Barmack NH, Fredette BJ, Mugnaini E. Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol. 1998;392:352–72.

    Article  CAS  PubMed  Google Scholar 

  44. Barmack NH, Yakhnitsa V. Vestibular signals in the parasolitary nucleus. J Neurophysiol. 2000;83:3559–69.

    CAS  PubMed  Google Scholar 

  45. Barmack NH, Fagerson M, Fredette BJ, Mugnaini E, Shojaku H. Activity of neurons in the beta nucleus of the inferior olive of the rabbit evoked by natural vestibular stimulation. Exp Brain Res. 1993;94:203–15.

    Article  CAS  PubMed  Google Scholar 

  46. Barmack NH. GABAergic pathways convey vestibular information to the beta nucleus and dorsomedial cell column of the inferior olive. In: Highstein SM, Cohen B, Büttner-Ennever J, editors. New directions in vestibular research. 1996. p. 541–552.

  47. Blazquez P, Partsalis A, Gerrits NM, Highstein SM. Input of anterior and posterior semicircular canal interneurons encoding head-velocity to the dorsal Y group of the vestibular nuclei. J Neurophysiol. 2000;83:2891–904.

    CAS  PubMed  Google Scholar 

  48. Wentzel PR, Wylie DR, Ruigrok TJ, De Zeeuw CI. Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci Lett. 1995;190:45–8.

    Article  CAS  PubMed  Google Scholar 

  49. De Zeeuw CI, Wentzel P, Mugnaini E. Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol. 1993;327:63–82.

    Article  PubMed  Google Scholar 

  50. Yakhnitsa V, Barmack NH. Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll-tilt and topographically organized. Neuroscience. 2006;143:615–26.

    Article  CAS  PubMed  Google Scholar 

  51. Barmack NH, Yakhnitsa V. Distribution of granule cells projecting to focal Purkinje cells in mouse uvula-nodulus. Neuroscience. 2008;156:216–21.

    Article  CAS  PubMed  Google Scholar 

  52. Barmack NH, Yakhnitsa V. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J Neurosci. 2011;31:9824–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Barmack NH, Yakhnitsa V. Functions of interneurons in mouse cerebellum. J Neurosci. 2008;28:1140–52.

    Article  CAS  PubMed  Google Scholar 

  54. Granit R, Phillips CG. Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol. 1956;133:520–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Haar S, Givon-Mayo R, Barmack NH, Yakhnitsa V, Donchin O. Spontaneous activity does not predict morphological type in cerebellar interneurons. J Neurosci. 2015;35:1432–42.

    Article  CAS  PubMed  Google Scholar 

  56. Pinault D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J Neurosci Methods. 1996;65:113–36.

    Article  CAS  PubMed  Google Scholar 

  57. Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJ. Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog Brain Res. 2005;148:329–40.

    Article  CAS  PubMed  Google Scholar 

  58. Holtzman T, Rajapaksa T, Mostofi A, Edgley SA. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol. 2006;574:491–507.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol. 1976;39:970–84.

    CAS  PubMed  Google Scholar 

  60. Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol. 1971;34:635–60.

    CAS  PubMed  Google Scholar 

  61. Barmack NH, Shojaku H. Vestibular and visual signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol. 1995;74:2573–89.

    CAS  PubMed  Google Scholar 

  62. Voogd J, Barmack NH. Oculomotor cerebellum. Prog Brain Res. 2005;151:231–68.

    Article  Google Scholar 

  63. Mugnaini E, Floris A. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol. 1994;339:174–80.

    Article  CAS  PubMed  Google Scholar 

  64. Diño MR, Schuerger RJ, Liu YB, Slater NT, Mugnaini E. Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience. 2000;98:625–36.

    Article  PubMed  Google Scholar 

  65. Ruigrok TJ, Hensbroek RA, Simpson JI. Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci. 2011;31:712–24.

    Article  CAS  PubMed  Google Scholar 

  66. Carter AG, Regehr WG. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J Neurosci. 2000;20:4423–34.

    CAS  PubMed  Google Scholar 

  67. Barmack NH, Yakhnitsa V. Cerebellar climbing fibers modulate simple spikes in cerebellar Purkinje cells. J Neurosci. 2003;23:7904–16.

    CAS  PubMed  Google Scholar 

  68. Barmack NH, Yakhnitsa V. Modulated discharge of Purkinje and stellate cells persists after unilateral loss of vestibular primary afferent mossy fibers in mice. J Neurophysiol. 2013;110:2257–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Fushiki H, Barmack NH. Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol. 1997;78:3083–94.

    CAS  PubMed  Google Scholar 

  70. Barmack NH, Yakhnitsa V. Vestibulocerebellar connections. In: Mantu M, Gruol DL, Schmahmann J, Koibuchi N, Rossi F, editors. Handbook of cerebellar disorders. 2012. p. 357–376.

  71. Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54:973–85.

    Article  CAS  PubMed  Google Scholar 

  72. Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron. 2013;78:700–13.

    Article  CAS  PubMed  Google Scholar 

  73. Kano M, Kano M-S, Maekawa K. Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit. Exp Brain Res. 1991;87:484–96.

    CAS  PubMed  Google Scholar 

  74. Schiffmann SN, Cheron G, Lohof A, D’Alcantara P, Meyer M, Parmentier M, et al. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci U S A. 1999;96:5257–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. De Zeeuw CI, Wylie DR, Stahl JS, Simpson JI. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. J Neurophysiol. 1995;74:2051–64.

    PubMed  Google Scholar 

  76. Winkelman B, Frens M. Motor coding in floccular climbing fibers. J Neurophysiol. 2006;95:2342–51.

    Article  PubMed  Google Scholar 

  77. Goossens J, Daniel H, Rancillac A, van der SJ, Oberdick J, Crepel F, et al. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci. 2001;21:5813–23.

    CAS  PubMed  Google Scholar 

  78. McDevitt CJ, Ebner TJ, Bloedel JR. The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain Res. 1982;237:484–91.

    Article  CAS  PubMed  Google Scholar 

  79. Sato Y, Miura A, Fushiki H, Kawasaki T. Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input. J Neurophysiol. 1992;68:2051–62.

    CAS  PubMed  Google Scholar 

  80. Hewitt AL, Popa LS, Ebner TJ. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation. J Neurosci. 2015;35:1106–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS, et al. Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol. 2007;97:2590–604.

    Article  CAS  PubMed  Google Scholar 

  82. Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G. Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 2014;111:14930–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Wulff P, Schonewille M, Renzi M, Viltono L, Sassoe-Pognetto M, Badura A, et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci. 2009;12:1042–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Bloedel JR, Roberts WJ. Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol. 1971;34:17–31.

    CAS  PubMed  Google Scholar 

  85. Midtgaard J. Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro. J Physiol. 1992;457:329–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Dzubay JA, Jahr CE. The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci. 1999;19:5265–74.

    CAS  PubMed  Google Scholar 

  87. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression on both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Ito M, Karachot L. Long-term desensitization of quisqualate-specific glutamate receptors in Purkinje cells investigated with wedge recording from rat cerebellar slices. Neurosci Res. 1989;7:168–71.

    Article  CAS  PubMed  Google Scholar 

  89. Sakurai M. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol. 1987;394:463–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Crépel F, Jaillard D. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol. 1991;432:123–41.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Narasimhan K, Linden DJ. Defining a minimal computational unit for cerebellar long-term depression. Neuron. 1996;17:333–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by DC006668 from the National Institute of Deafness and Communicative Disorders and EY018561 from the National Eye Institute.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Barmack.

Additional information

I first encountered Enrico Mugnaini when I was beginning and he was ending a postdoctoral fellowship in Oslo in the fall of 1969. I most remember Enrico speaking with enthusiasm as he described his most recent electron micrographs demonstrating cerebellar circuitry. Our paths crossed at several meetings during the next 10 years. Each time, he not only had new and interesting findings but was keen to learn how the circuitry fit together functionally. In 1980, I was recruited by the Department of Biological Sciences at the University of Connecticut. So Enrico and I became colleagues and collaborators. We worked together in unraveling the GABAergic pathways to the inferior olive.

Anyone who visited Enrico’s laboratory could only describe it as an adventure. While most of the campus buildings at UCONN were clustered together, Enrico’s lab was set apart on the side of a hill in a farm meadow. Descending to his lab felt like falling off the edge of the earth. A rusted-out tractor marked the entrance to his lab. When we co-examined immunohistochemical preparations he engaged in an anthropomorphic narrative of each histological detail.

Both of us eventually left UCONN. Enrico had a very productive period at Northwestern, scientifically and administratively. I knew that he would become an excellent chairman, because he had the ability to engage informal and humorous conversation with me in his laboratory while simultaneously feigning anger and insult on the telephone with an administrator who had done him wrong. This volume to honor his work and career is more than justified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barmack, N.H., Yakhnitsa, V. Climbing Fibers Mediate Vestibular Modulation of Both “Complex” and “Simple Spikes” in Purkinje Cells. Cerebellum 14, 597–612 (2015). https://doi.org/10.1007/s12311-015-0725-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0725-1

Keywords

Navigation