Skip to main content

The Contribution of the Cerebellum in the Hierarchial Development of the Self

An Erratum to this article was published on 16 May 2015

Abstract

What distinguishes human beings from other living organisms is that a human perceives himself as a “self”. The self is developed hierarchially in a multi-layered process, which is based on the evolutionary maturation of the nervous system and patterns according to the rules and demands of the external world. Many researchers have attempted to explain the different aspects of the self, as well as the related neural substrates. In this paper, we first review the previously proposed ideas regarding the neurobiology of the self. We then suggest a new hypothesis regarding the hierarchial self, which proposes that the self is developed at three stages: subjective, objective, and reflective selves. In the second part, we attempt to answer the question “Why do we need a self?” We therefore explain that different parts of the self developed in an effort to identify stability in space, stability against constantly changing objects, and stability against changing cognitions. Finally, we discuss the role of the cerebellum as the neural substrate for the self.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Panksepp J, Bivon L. The archaelogy of mind: neuroevolutionary origins of human emotions. New York: W.W. Norton & Company; 2012.

    Google Scholar 

  2. Damasio A. Self comes to mind: constructing the conscious brain. London: William Heinomann; 2010.

    Google Scholar 

  3. Feinberg TE. The nested neural hierarchy and the self. Conscious Cogn. 2011;20:4–15.

    Article  PubMed  Google Scholar 

  4. Gallagher S. Philosophical conceptions of the self: implications for cognitive sciences. Trend Cogn Sci. 2000;4:14–21.

    Article  Google Scholar 

  5. Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.

    Article  PubMed  Google Scholar 

  6. Solms M, Panksepp J. The “id” knows more than the “ego” admits: neuropsychoanalytic and primal consciousness perspectives on the interface between affective and cognitive neuroscience. Brain Sci. 2012;2:147–75.

    PubMed Central  Article  PubMed  Google Scholar 

  7. Northoff G. Neuropsychoanalysis in practice: brain, self, and objects. New York: Oxford University Press; 2011.

    Book  Google Scholar 

  8. Raichle ME, MacLeod AM, Snyder AZ, Power WJ, Gusnard DA, Shulman GL. A default mode of brain functions. Proc Natl Acad Sci U S A. 2001;98:676–82.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  10. Fransson P, Marrelec G. The precuneus/posterior cingulated cortex plays a pivotal role in default mode network: evidence from a partial correlation network analysis. Neuroimage. 2008;42:1178–84.

    Article  PubMed  Google Scholar 

  11. Burgess N. Spatial memory: how egocentric and allocentric combine. Trend Cogn Sci. 2006;10:551–7.

    Article  Google Scholar 

  12. Graziano MSA, Gross CG. Spatial maps for the control of movement. Curr Opin Neurobiol. 1998;8:195–201.

    CAS  Article  PubMed  Google Scholar 

  13. Wang RF, Spelke ES. Human spatial representation: insights from animals. Trend Cogn Sci. 2002;6:376–83.

    Article  Google Scholar 

  14. Bridgeman B, Gemmer A, Forsman T, Huemer V. Processing spatial information in the sensorimotor branch of the visual system. Vision Res. 2000;40:3539–52.

    CAS  Article  PubMed  Google Scholar 

  15. Clarac F, Massion J, Stuart DG. Reflections on Jacques Paillard [1920–2006]—a pioneer in the field of motor cognition. Brain Res Rev. 2009;61:256–80.

    Article  PubMed  Google Scholar 

  16. Rossetti Y. Implicit short-lived motor representations of space in brain damaged and healthy subjects. Conscious Cogn. 1998;7:520–58.

    CAS  Article  PubMed  Google Scholar 

  17. Carrozzo M, Stratta F, McIntyre J, Lacquaniti. Cognitive allocentric representations of visual space shape pointing errors. Exp Brain Res. 2002;147:426–36.

    CAS  Article  PubMed  Google Scholar 

  18. Daprati E, Gentilucci M. Grasping an illusion. Neuropsychologia. 1997;35:1577–82.

    CAS  Article  PubMed  Google Scholar 

  19. Heath M, Rival C, Neely K. Müller-Lyer figures influence the online reorganization of visually guided grasping movements. Exp Brain Res. 2006;169:473–81.

    Article  PubMed  Google Scholar 

  20. Buckner RL, Carroll DC. Self-projection and the brain. Trend Cogn Sci. 2007;11:49–57.

    Article  Google Scholar 

  21. Schacter DL, Addis DR, Buckner RL. Remembering the past to imagine the future: the prospective brain. Nat Rev Neurosci. 2007;8:657–61.

    CAS  Article  PubMed  Google Scholar 

  22. Botzung A, Denkova E, Manning L. Experiencing past and future personal events: functional neuroimaging evidence on the neural basis of mental time travel. Brain Cogn. 2008;66:236–47.

    Article  Google Scholar 

  23. Frith U, Frith CD. Development and neurophysiology of mentalizing. Philos Trans R Soc Lond Biol Sci. 2003;358:459–73.

    Article  Google Scholar 

  24. Gallagher HL, Frith CD. Functional imaging of ‘theory of mind’. Trend Cogn Sci. 2003;7:77–83.

    Article  Google Scholar 

  25. Singer T. The neural basis and ontogeny of empathy and mind reading: review of literature and implications for future research. Neurosci Biobehav Rev. 2006;30:855–63.

    Article  PubMed  Google Scholar 

  26. Ito M. Cerebellar circuitry as a neural machine. Prog Neurobiol. 2006;78:272–303.

    Article  PubMed  Google Scholar 

  27. Voogd J. The human cerebellum. J Chem Neuroanat. 2003;26:243–52.

    Article  PubMed  Google Scholar 

  28. Garel C, Fallet-Bianco C, Guibaud L. The fetal cerebellum: development and common malformations. J Child Neurol. 2011;26:1483–92.

    Article  PubMed  Google Scholar 

  29. Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state fMRI. Front Syst Neurosci. 2010;4:21.

    PubMed Central  PubMed  Google Scholar 

  30. Koziol LF, Buddin D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.

    PubMed Central  Article  PubMed  Google Scholar 

  31. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  32. Mendoza JE, Foundas AL. Clinical neuroanatomy: a neurobehavioral approach. New York: Springer Science + Business Media, Inc.; 2008.

    Google Scholar 

  33. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trend Cogn Sci. 2013;17:241–54.

    Article  Google Scholar 

  34. Manto M. The cerebellum, cerebellar disorders, and cerebellar research: two centuries of discoveries. Cerebellum. 2008;7:505–16.

    Article  PubMed  Google Scholar 

  35. Strick PL, Dum RP, Fiez JA. Cerebellum and non-motor function. Ann Rev Neurosci. 2009;32:413–34.

    CAS  Article  PubMed  Google Scholar 

  36. Habas C, Kamdar N, Nguyan D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    PubMed Central  Article  PubMed  Google Scholar 

  38. O’Reilly JX, Beckmann CF, Tamassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    PubMed Central  Article  PubMed  Google Scholar 

  39. Ros H, Sachdov RN, Yu Y, Sestan N, McCormick DA. Neocortical network entrain neural circuits in cerebellar cortex. J Neurosci. 2009;29:10309–20.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  40. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–7.

    CAS  Article  PubMed  Google Scholar 

  41. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49:2045–52.

    CAS  Article  PubMed  Google Scholar 

  42. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    CAS  Article  PubMed  Google Scholar 

  43. Barrett LF, Satpute AB. Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 2013;23:361–72.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  44. Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  45. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.

    CAS  Article  PubMed  Google Scholar 

  46. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  47. Reeber SL, Otis TS, Sillitoe RV. New roles for the cerebellum in health and disease. Front Syst Neurosci. 2013;7:83. doi:10.3389/fnsys.2013.00083.

    PubMed Central  Article  PubMed  Google Scholar 

  48. Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 2010;9:94–104.

    CAS  Article  PubMed  Google Scholar 

  49. Hallet M. Dystonia: a sensory and motor disorder of short latency inhibition. Ann Neurol. 2009;66:125–7.

    Article  Google Scholar 

  50. Shamim EA, Chu J, Scheider LH, Savitt J, Jinnah HA, Hallet M. Extreme task specificity in writer’s cramp. Mov Disord. 2011;26:2107–9.

    PubMed Central  Article  PubMed  Google Scholar 

  51. Niethammer M, Carbon M, Argyelan M, Eidelberg D. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42:202–9.

    PubMed Central  Article  PubMed  Google Scholar 

  52. O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol. 2011;34:35–56.

    Article  PubMed  Google Scholar 

  53. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    CAS  Article  PubMed  Google Scholar 

  54. Schmahmann JD. The cerebellar cognitive affective syndrome: clinical correlations of dysmetria of thought hypothesis. Int Rev Psychiatry. 2001;13:247–60.

    Article  Google Scholar 

  55. Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical cerebellar circuitry? Schizophr Bull. 1998;24:203–18.

    CAS  Article  PubMed  Google Scholar 

  56. Magal A. A hypothetical universal model of cerebellar function: reconsideration of the current dogma. Cerebellum. 2013;12:758–72.

    Article  PubMed  Google Scholar 

  57. Chung T, Poon CS. Internal models in sensorimotor integration: perspectives from adaptive control theory. J Neural Eng. 2005;2:S147–63.

    Article  Google Scholar 

  58. Ito M. Controller-regulator model of the central nervous system. J Integr Neurosci. 2002;1:129–43.

    Article  PubMed  Google Scholar 

  59. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    CAS  Article  PubMed  Google Scholar 

  60. Diamond A, Goldman-Rakic P. Comparison of human infants and rhesus monkeys on Piaget’s A not B task: evidence for dependence on dorsolateral prefrontal cortex. Exp Brain Res. 1989;74:24–40.

    CAS  Article  PubMed  Google Scholar 

  61. Baird A, Kagan J, Gaudette T, Walz KA, Hershlag N, Boas D. Frontal lobe activation during object permanence: data from near-infrared spectroscopy. Neuroimage. 2002;16:1120–6.

    Article  PubMed  Google Scholar 

  62. Bell MA, Fox NA. The relations between frontal brain electrical activity and cognitive development during infancy. Child Dev. 1992;63:1142–63.

    CAS  Article  PubMed  Google Scholar 

  63. Ghajar J, Ivry RB. The predictive brain state: a synchrony in disorders of attention? Neuroscientist. 2009;15:232–42.

    PubMed Central  Article  PubMed  Google Scholar 

  64. Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7:572–6.

    Article  PubMed  Google Scholar 

  65. Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43:350–8.

    Article  PubMed  Google Scholar 

  66. Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24:1173–81.

    CAS  Article  PubMed  Google Scholar 

  67. Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73:527–44.

    Article  PubMed  Google Scholar 

  68. Mundy P, Gwaltney M, Henderson H. Self-referenced processing, neurodevelopment and joint attention in autism. Autism. 2010;14:408–29.

    PubMed Central  Article  PubMed  Google Scholar 

  69. Philippi CL, Koenigs M. The neuropsychology of self-reflection in psychiatric illness. J Psychiatr Res. 2014;2:1–9.

    Google Scholar 

  70. Lombard MV, Barnes JL, Wheelwright SJ, Baron-Cohen S. Self referential cognition and empathy in autism. PLoS One. 2007;2, e883.

    Article  Google Scholar 

  71. Uddin LQ. The self in autism: an emerging view from neuroimaging. Neurocase. 2011;17:201–8.

    PubMed Central  Article  PubMed  Google Scholar 

  72. Vakalopoulos C. The development basis of visuomotor capabilities and the causal nature of motor clumsiness to cognitive and empathic dysfunction. Cerebellum. 2013;12:212–23.

    Article  PubMed  Google Scholar 

  73. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.

    Article  PubMed  Google Scholar 

  74. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22:171–5.

    Article  PubMed  Google Scholar 

  75. Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain. 2002;125:1483–95.

    CAS  Article  PubMed  Google Scholar 

  76. Courchesne E, Young-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.

    CAS  Article  PubMed  Google Scholar 

  77. Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger’s syndrome. Neuroimage. 2008;41:1184–91.

    Article  PubMed  Google Scholar 

  78. Gowen E, Miall RC. Behavioral aspects of cerebellar function in adults with Asperger syndrome. Cerebellum. 2005;4:279–89.

    Article  PubMed  Google Scholar 

  79. Ito M. Nurturing the brain as an emerging research field involving child neurology. Brain Dev. 2004;26:429–33.

    Article  PubMed  Google Scholar 

  80. Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittlemen G, Blaka CD. Correcting the dots of the cerebro-cerebellar role in cognitive function: neural pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65:1204–12.

    CAS  Article  PubMed  Google Scholar 

Download references

Conflict of Interest

There are no conflicts of interest or competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslıhan Dönmez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ceylan, M.E., Dönmez, A. & Ülsalver, B.Ö. The Contribution of the Cerebellum in the Hierarchial Development of the Self. Cerebellum 14, 711–721 (2015). https://doi.org/10.1007/s12311-015-0675-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0675-7

Keywords

  • Self
  • Development
  • Neurobiology
  • Cerebellum